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Abstract 21 

Calibration of terrestrial ecosystem models is important but challenging. Bayesian inference 22 

implemented by Markov chain Monte Carlo (MCMC) sampling provides a comprehensive 23 

framework to estimate model parameters and associated uncertainties using their posterior 24 

distributions. The effectiveness and efficiency of the method strongly depend on the MCMC 25 

algorithm used. In this study, a Differential Evolution Adaptive Metropolis (DREAM) algorithm 26 

was used to estimate posterior distributions of 21 parameters for the data assimilation linked 27 

ecosystem carbon (DALEC) model using 14 years of daily net ecosystem exchange data 28 

collected at the Harvard Forest Environmental Measurement Site eddy-flux tower. The DREAM 29 

is a multi-chain method and uses differential evolution technique for chain movement, allowing 30 

it to be efficiently applied to high-dimensional problems, and can reliably estimate heavy-tailed 31 

and multimodal distributions that are difficult for single-chain schemes using a Gaussian 32 

proposal distribution. The results were evaluated against the popular Adaptive Metropolis (AM) 33 

scheme. DREAM indicated that two parameters controlling autumn phenology have multiple 34 

modes in their posterior distributions while AM only identified one mode. The calibration of 35 

DREAM resulted in a better model fit and predictive performance compared to the AM. 36 

DREAM provides means for a good exploration of the posterior distributions of model 37 

parameters. It reduces the risk of false convergence to a local optimum and potentially improves 38 

the predictive performance of the calibrated model. 39 

Keywords: Bayesian calibration, MCMC sampling, AM algorithm, DREAM algorithm, DALEC 40 

model, multimodality, terrestrial ecosystem models. 41 
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1 Introduction 42 

Prediction of future climate heavily depends on accurate predictions of the concentration of 43 

carbon dioxide (CO2) in the atmosphere. Predictions of atmospheric CO2 concentrations rely on 44 

terrestrial ecosystem models (TEMs) to simulate the CO2 exchange between the land surface and 45 

the atmosphere. TEMs typically involve a large number of biogeophysical and biogeochemical 46 

processes, the representation of which requires knowledge of many process parameters. Some 47 

parameters can be determined directly from experimental and measurement data, but many are 48 

also estimated through model calibration. Estimating these parameters indirectly from 49 

measurements (such as the net ecosystem exchange (NEE) data) is a challenging inverse 50 

problem.  51 

Various parameter estimation methods have been applied to TEMs. For an overview, one 52 

can refer to the OptIC (Optimization InterComparison) project (Trudinger et al., 2007) and the 53 

REFLEX (REgional FLux Estimation eXperiment) project (Fox et al., 2009). In classical 54 

optimization based approaches, inverse problems with a large number of parameters can often be 55 

ill-posed in that the solution may not be unique or even may not exist (O’Sullivan, 1986). As an 56 

alternative approach, the Bayesian framework provides a comprehensive solution to this 57 

problem. In Bayesian methods, the model parameters are treated as random variables and their 58 

posterior probability density functions (PPDFs) represent the estimation results. The PPDF 59 

incorporates prior knowledge of the parameters, mismatch between model and observations, and 60 

observation uncertainty (Lu et al., 2012). Thus, compared to other approaches in inverse 61 

problems, Bayesian inference not only estimates model parameters, but also quantifies associated 62 

uncertainty using a full probabilistic description.   63 
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Two types of Bayesian methods are widely used in parameter estimation of TEMs, 64 

variational data assimilation (VAR) methods (Talagrand and Courtier, 1987) and Markov chain 65 

Monte Carlo (MCMC) sampling. VAR methods are computationally efficient, however, they 66 

assume that the prior parameter values and the observations follow a Gaussian distribution, and 67 

they require the model to be differentiable with respect to all parameters for optimization. In 68 

addition, VAR methods can only identify a local optimum and approximate the PPDF by a 69 

Gaussian function (Rayner et al, 2005; Ziehn et al., 2012). In contrast, MCMC sampling makes 70 

no assumptions about the structure of the prior and posterior distributions of model parameters or 71 

observation uncertainties. Moreover, the MCMC methods, in principle, can converge to the true 72 

PPDF with an identification of all possible optima. Although it is more computationally intensive 73 

than VAR approaches, MCMC sampling is being increasingly applied in the land surface 74 

modeling community (Dowd, 2007; Zobitz et al, 2011).  75 

One widely used MCMC algorithm is adaptive Metropolis (AM) (Haario et al. 2001). For 76 

example, Fox et al. (2009) applied the AM in their comparison of different algorithms for the 77 

inversion of a terrestrial ecosystem model; Järvinen et al. (2010) utilized the AM for estimation 78 

of ECHAM5 climate model closure parameters; Hararuk et al. (2014) employed the AM for 79 

improvement of a global land model against soil carbon data; and Safta et al. (2015) used the 80 

AM to estimate parameters in the data assimilation linked ecosystem carbon model. The AM 81 

algorithm uses a single Markov chain that continuously adapts the covariance matrix of a 82 

Gaussian proposal distribution using the information of all previous samples collected in the 83 

chain so far (Haario et al., 1999). As a single-chain method, AM has difficulty in traversing 84 

multi-dimensional parameter space efficiently when there are numerous significant local optima; 85 

and AM can be unreliable for estimating the PPDFs of the parameters that exhibit strong 86 
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correlation. In addition, the AM algorithm uses a multivariate Gaussian distribution as the 87 

proposal to generate candidate samples and evolve the chain. AM, therefore, particularly suitable 88 

for Gaussian shaped PPDFs, but it may not converge properly to the distributions with multiple 89 

modes and those with heavy tails like the Cauchy distributions. Moreover, AM suffers from 90 

uncertainty about how to initialize the covariance of the Gaussian proposal. Poor initialization of 91 

the proposal covariance matrix results in slow adaptation and inefficient convergence.   92 

The Gaussian proposal is also widely used in non-AM MCMC studies that involve TEMs. 93 

For example, Ziehn et al. (2012) used the Gaussian proposal for the MCMC simulation of the 94 

BETHY model (Knorr and Heimann, 2011) and Ricciuto et al. (2008, 2011) utilized the 95 

Gaussian proposal in their MCMC schemes to estimate parameters in a terrestrial carbon cycle 96 

model. The single-chain and Gaussian-proposal MCMC approaches have limitations in 97 

sufficiently exploring the full parameter space and share low convergence in sampling the non-98 

Gaussian shaped PPDFs and thus may end up with a local optimum with inaccurate uncertain 99 

representation of the parameters. Therefore, this poses a question on whether the AM and the 100 

widely used MCMC algorithms with Gaussian proposal generate a representing sample of the 101 

posterior distributions of the underlying model parameters. While we expect that 102 

computationally expensive sampling methods for parameter estimation yield a global optimum 103 

with an accurate probabilistic description, in reality, we may in many cases obtain a local 104 

optimum with an inaccurate PPDF due to the limitations of these algorithms.   105 

In this study, we employ the differential evolution adaptive Metropolis (DREAM) 106 

algorithm (Vrugt et al., 2008, 2009a; Zhang et al., 2013; Lu et al., 2014) for an accurate Bayesian 107 

calibration of an ecosystem carbon model. The DREAM scheme runs multiple interacting chains 108 

simultaneously to explore the entire parameter space globally. During the search, DREAM does 109 
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not rely on a specific distribution, like the Gaussian distribution used in most MCMC schemes, 110 

to move the chains. Instead, it uses the differential evolution optimization method to generate the 111 

candidate samples from the collection of chains (Price et al., 2005). This feature of DREAM 112 

eliminates the problem of initializing the proposal covariance matrix and enables efficient 113 

handling of complex distributions with heavy tails and strong correlations. In addition, as a 114 

multi-chain method, DREAM can efficiently sample multimodal posterior distributions with 115 

numerous local optima. Thus, the DREAM scheme is particularly applicable to complex and 116 

multimodal optimization problems.   117 

While multimodality is a potential feature of parameters in complex models (Thibault et al, 118 

2011; Zhang et al., 2013), its existence has not been well documented in terrestrial ecosystem 119 

modeling due to the limitations of methods that have been applied in most previous studies. Here 120 

we apply both the DREAM and the AM methods to three benchmark functions and a TEM to 121 

estimate the parameter distributions. In the latter case, we estimate the PPDFs of 21 process 122 

parameters in the data assimilation linked ecosystem carbon (DALEC) model. The objectives of 123 

this study are to (1) present a statistically sound methodology to solve the parameter estimation 124 

problems in complex TEMs and to improve the model simulation; (2) characterize parameter 125 

uncertainty in detail using accurately sampled posterior distributions; and (3) investigate the 126 

effects of model calibration methods on parameter estimation and model performance. This work 127 

should provide ecological practitioners with valuable information on model calibration and 128 

understanding of the TEMs. 129 

In the following Section 2, we first briefly summarize the general idea of Bayesian 130 

calibration, and describe the AM and DREAM algorithms. Then in Section 3, we compare the 131 

performance of the two algorithms in sampling three known target distributions. Next in Section 132 
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4, the application of the DREAM algorithm to the DALEC model is presented and discussed; in 133 

comparison, we also discussed the results from the AM sampler. Finally in Section 5, we close 134 

this paper with our main conclusions.      135 

2 Bayesian calibration and MCMC simulation 136 

2.1 Bayesian calibration 137 

Bayesian calibration of a model states that the posterior distribution p(x|D) of the model 138 

parameters x, given observation data D, can be obtained from the prior distribution p(x) of x and 139 

the likelihood function L(x|D) using Bayes’ theorem (Box and Tiao, 1992) via, 140 

                                                p(x |D) = cL(x |D)p(x)                                                       (1) 141 

where c is a normalization constant. The prior distribution represents the prior knowledge about 142 

the parameters. It is usually inferred from information of previous studies in similar sites or from 143 

expert judgment. In the lack of prior information, a common practice is to use uninformative 144 

priors within relatively wide parameter ranges such that the prior distribution has little influence 145 

on the estimation of the posterior distribution.  146 

The likelihood function measures the model fits to the observations. Selecting a likelihood 147 

function suitable to a specific problem is still under study (Vrugt et al., 2009b). A commonly 148 

used likelihood function is based on the assumption that the differences between the model 149 

simulations and observations are multivariate normally distributed, leading to a Gaussian 150 

likelihood such as the work of Fox et al. (2009), Hararuk et al. (2014), and Ricciuto et al. (2008, 151 

2011). In this work, we also use the Gaussian likelihood, with uncorrelated variances that are 152 

evaluated from the provided daily observation uncertainties. The effect of data correlations on 153 

the inferred parameters was assessed in our previous study (Safta et al., 2015).   154 
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2.2 MCMC sampling 155 

In most environmental problems, the posterior distribution cannot be obtained with an 156 

analytical solution and is typically approximated by sampling methods such as MCMC. The 157 

MCMC method approximates the posterior distribution by constructing a Markov chain whose 158 

stationary distribution is the target distribution of interest. As the chain evolves and approaches 159 

the stationary, all the samples after chain convergence are used for posterior distribution 160 

approximation, and the samples before convergence, which are affected by the starting states of 161 

the chain, are discarded. The earliest MCMC approach is the well-known random walk 162 

Metropolis sampler (Metropolis et al., 1953). Assume at iteration t we have obtained the samples 163 

{x0, x1, …, xt}, where x0 is the initial sample from a certain distribution (e.g., the parameter prior 164 

distribution). Then the Markov chain evolves in the following way. First, a candidate point z is 165 

sampled from a symmetric proposal distribution q, which has the property    q(z | x t ) = q(x t | z) . 166 

Next, the candidate point is either accepted or rejected according to a Metropolis ratio α 167 

calculated as 168 

                                      

α =
min p(z |D)

p(x t |D)
, 1

⎡

⎣
⎢

⎤

⎦
⎥     if  p(x t |D) > 0

1                                 if  p(x t |D) = 0

⎧

⎨
⎪

⎩
⎪

                                (2) 169 

where p(z|D) and p(xt|D) denote the density of the posterior distribution evaluated at z and xt, 170 

respectively. Lastly, if the candidate is accepted, the chain uses the sample xt+1 = z at iteration 171 

t+1; otherwise, it keeps the current sample xt+1 = xt.   172 

The Metropolis sampler is the basis of many existing MCMC sampling schemes. The well-173 

constructed MCMC schemes have been theoretically proven to converge to the appropriate target 174 

distribution p(x|D) under certain regularity conditions (Robert and Casella, 2004, p.270). 175 

However, in practice the convergence rate is often impractically slow, which suggests that within 176 
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a limited finite number of iterations, some inefficient schemes may result in an unrealistic 177 

distribution. The inefficiency is typically resulted from an inappropriate choice of the proposal 178 

distribution used to generate the candidates. Either wide or narrow proposal distribution can 179 

cause inefficient chain mixing and slow chain convergence (Lu et al., 2014). Hence, the 180 

definition of the proposal distribution is crucial and determines the efficiency and the practical 181 

applicability of the MCMC simulation. 182 

2.3 AM algorithm 183 

The adaptive Metropolis (AM) algorithm is a modification to the standard Metropolis 184 

sampler (Haario et al., 2001). The key feature of the AM algorithm is that it uses a single 185 

Markov chain that continuously adapts to the target distribution via its calculation of the proposal 186 

covariance using all previous samples in the chain. The proposal distribution employed in the 187 

AM algorithm is a multivariate Gaussian distribution with means at the current iteration xt and a 188 

covariance matrix Ct that is updated along the chain evolution. To start the chain, the AM first 189 

selects an arbitrary, strictly positive definite initial covariance C0 according to the best prior 190 

knowledge that may be very poor. Then after a certain number of iterations T, the covariance is 191 

updated based on the samples gained so far,  192 

                                       
    
Ct =

C0 ,  t ≤ T

sdCov(x0 ,,x t )+ sdε Id ,  t > T

⎧
⎨
⎪

⎩⎪
                                    (3) 193 

where ε is a small value chosen to ensure Ct does not become singular, Id denotes the d-194 

dimensional identity matrix and sd is a scaling parameter depending on the dimensionality of the 195 

parameter x to ensure reasonable acceptance rates. As a basic guideline, Haario et al. (2001) 196 

suggested choosing the value sd = 2.42/d, which is shown to be optimal for Gaussian targets and 197 

Gaussian proposal distributions (Gelman et al., 1995).  198 
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To apply the AM algorithm, an initial covariance C0 must be defined. The choice of C0 199 

critically determines the success of the algorithm. For example, when the variance of C0 is too 200 

large, it is possible that no proposals are accepted within an iteration, and that the chain will 201 

remain at the initial state without any movement. This situation continues as the chain evolves, 202 

and the use of updated Ct would not make any difference because the variances of Ct are 203 

essentially zero since all the previous samples have the same values. In this case, the AM 204 

sampler would get stuck in the initial state without exploring the parameter space. To alleviate 205 

this problem and start the AM fairly efficiently, we can define C0 based on some prior 206 

knowledge about the target distribution. When such information is not available, which is usually 207 

the case for complex models, some test simulations are needed. For example, Hararuk et al. 208 

(2014) inferred C0 from a test run of 50,000 community land model simulations in estimating the 209 

PPDFs of soil carbon related parameters.  210 

The construction of Ct is another critical influence on the AM performance. In practice, 211 

some adjustments on Ct are necessary to improve the AM efficiency. For example, on the basis 212 

of Eq. (3), the Ct  can be shrunk or amplified by some constant according to the chain evolution. 213 

When the chain does not have enough movement after a large number of iterations, we shrink Ct  214 

a little bit to increase acceptance of new samples, and vice versa. The techniques used in the 215 

formulation of C0 and Ct may improve the AM efficiency in some degree for some problems. 216 

However, the computational cost spent on applying these techniques is not negligible (such as 217 

the test runs used for determining the C0) and some strategies even require artificial control (such 218 

as manual adjustment of the scaling factor of Ct). Moreover, determining a reasonable C0 and Ct 219 

become very difficult for high-dimensional problems.   220 
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To improve efficiency in high-dimensional case, Haario et al. (2006) extended the standard 221 

AM method to componentwise adaptation. This strategy applies the AM on each parameter 222 

separately. The proposal distribution of each component is a 1D normal distribution, which is 223 

adapted in a similar manner as in the standard AM algorithm. However, the componentwise 224 

adaptation does not work well for distributions with a strong correlation. Safta et al. (2015) 225 

applied an iterative algorithm to break the original high-dimensional problem into a sequence of 226 

steps of increasing dimensionality, with each intermediate step starting with an appropriate 227 

proposal covariance based on a test run. This technique provided a rather reasonable proposal 228 

distribution, but the computational cost used to define the proposal was rather high.    229 

AM is a single-chain method. As a single chain, it is particularly difficult to judge the 230 

convergence. Even the most powerful diagnostics cannot guarantee that the chain has converged 231 

to the target distribution (Gelman and Shirley, 2011). One solution to alleviate the problem is 232 

running multiple independent chains with widely dispersive starting points and then using the 233 

diagnostics for multi-chain schemes, such as the   R̂  statistic of Gelman and Rubin (1992), to 234 

check convergence. The   R̂  statistic calculates the ratio of between-chain variance to with-in 235 

chain variance. When the chain has a good mixing and all the chains converge to the same 236 

PPDF, the   R̂  value is close to one, and in practice the threshold of 1.2 is usually used for 237 

convergence diagnosis. On the other hand, when the chain does not mix well and different chains 238 

converge to the different portion of the target distribution, it is unlikely that the   R̂  will reach the 239 

value of 1.2 required to declare convergence. Generally, this situation suggests that multiple 240 

modes exist in the target PPDF and the AM sampler is unable to identify all the modes using a 241 

single chain.  242 
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2.4 DREAM algorithm 243 

The DREAM algorithm is a multi-chain method (Vrugt, 2016). Multi-chain approaches use 244 

multiple chains running in parallel for global exploration of the posterior distribution, so they 245 

have several desirable advantages over the single-chain methods, particularly when addressing 246 

complex problems involving multimodality and having a large number of parameters with strong 247 

correlations. In addition, the application of multiple chains allows utilizing a large variety of 248 

statistical measures to diagnose the convergence including the   R̂  statistic mentioned above.   249 

DREAM uses the Differential Evolution Markov Chain (DE-MC) algorithm (ter Braak, 250 

2006) as its main building block. The key feature of the DE-MC scheme is that it does not 251 

specify a particular distribution as the proposal, but proposes the candidate point using the 252 

differential evolution method based on current samples collected in the multiple chains. Thus, 253 

DE-MC can apply to a wide range of problems whose distribution shapes are not necessarily 254 

similar to the proposal distribution, and it also removes the requirement of initializing the 255 

covariance matrix as in AM. As previously, we denote the sample at iteration t of a single chain 256 

by a d-dimensional vector xt, then the samples from N chains at the iteration t construct a N × d 257 

matrix saved in Xt; usually N=2d. In DE-MC, the candidate point zi in each chain i={1, 2, …, N} 258 

are generated by taking a fixed multiple of the difference of two randomly chosen chains of Xt 259 

with indexes r1 and r2, i.e., 260 

                                  z
i = x t

i + γ (Xt
r1 − Xt

r2 ) + ε,      r1 ≠ r2 ≠ i                                     (4) 261 

where the multiplier γ is suggested as   2.4 / 2d  for its optimal performance, and for every 10th 262 

iteration γ=1.0 to facilitate jumping between different modes;  ε is drawn from a symmetric d-263 

dimensional distribution with a small variance compared to the width of the target distribution. 264 

By accepting the candidate point with the Metropolis ratio defined in Eq. (2), a Markov chain is 265 
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obtained with its limiting distribution of the target PPDF, as proved in ter Braak (2006) and 266 

Vrugt et al. (2008, 2009a). The DE-MC algorithm can successfully simulate the multimodal 267 

distributions, because it directly uses the current location of the multiple chains stored in X, 268 

instead of Cov(X) from a single chain, to generate candidate points, allowing the possibility of 269 

direct jumps between different modes. In addition, it has no difficulty in simulating the 270 

distributions with heavy tails, because it does not use the Gaussian proposal whose function gets 271 

small much faster than the heavy-tailed functions in the tails and thus causes sampling problems 272 

as reported in Robert and Casella (2004) and demonstrated in Section 3 of this work.  273 

The DREAM algorithm maintains the nice features of the DE-MC, but greatly accelerates 274 

the chain convergence. First, DREAM generates the candidate sample based on the difference of 275 

more than one pair of chains, which brings more information about the target distribution and 276 

thus accelerates the convergence. Secondly, DREAM uses a subspace sampling strategy that 277 

selectively updates only some parameters when generating a candidate sample. This strategy 278 

improves efficiency in high-dimensional samplings as the performance of optimization 279 

deteriorates exponentially with increasing dimensions. In addition, the subspace sampling 280 

strategy also enables the number of chains less than the number of parameters, which reduces the 281 

waste of computing resources, as each individual chain requires a certain portion of samples to 282 

be discarded before converging to the target distribution. Thirdly, DREAM explicitly handles the 283 

unproductive chains stuck in regions of the parameter space that are not contributing to the target 284 

PPDF. This strategy of removing outlier chains is very important for multi-chain methods, as the 285 

samples from these outlier chains will not only deteriorate the generation of the candidate points, 286 

which thus slow down the movement of other robust chains, but even worse they may prevent 287 

the convergence to the target distribution. For example, if one chain keeps sampling the area 288 
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isolated from the target distribution that other chains are sampling, it will make the   R̂  statistic 289 

almost impossible to reach the threshold of 1.2 required to declare convergence. Therefore, 290 

DREAM detects the outlier chains and forces their current states to the positions of other well-291 

performed chains, which greatly speeds up the convergence. More information about the 292 

DREAM algorithm was presented in Vrugt et al. (2008, 2009a, 2016) and Lu et al. (2014). 293 

3 Comparison between AM and DREAM algorithms  294 

It is useful to know the estimated PPDFs from a sampling algorithm are the desired target 295 

posterior distributions. So, in this section we evaluate the performance of DREAM in sampling 296 

three known target distributions and compare results with the widely used AM algorithm. The 297 

three distributions are high-dimensional, heavy-tailed, and multimodal distributions that are 298 

notoriously difficult to approximate with MCMC sampling and are typical problems in terrestrial 299 

ecosystem modeling (Kinlan and Gaines, 2003; Stead et al., 2005; Thibault et al., 2011). In all 300 

studies, the computational efficiency of the algorithms is evaluated by the accuracy of the 301 

approximate posterior distribution for the same number of total function evaluations, although 302 

DREAM uses multiple parallel chains and AM employs only one chain. 303 

3.1 Case study I: a 50-dimensional Gaussian distribution function 304 

The first case study is a high-dimensional convex problem. The test function is a 50-305 

dimensional (50 parameters) multivariate Gaussian distribution with the mean at the zeros. The 306 

covariance matrix was constructed such that the variance of the ith dimension is equal to 0.1×i×i 307 

and the covariance of ith and jth variables is calculated as 0.05×i ×j. Both the AM and DREAM 308 

located the initial states of the chains from a uniform distribution    x0 ∈U[−50,  50]50 . Besides, 309 

AM used an identity matrix as its initial covariance C0. DREAM used ten parallel chains and 310 

AM run a single chain.  311 
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The simulation results of 100,000 function evaluations for both AM and DREAM are 312 

summarized in Figure 1, which depicts the evolution of the sample mean of parameter x1, 313 

standard deviations of parameters x10 and x50, and the covariance between parameters x5 and x30. 314 

The true values of these statistics were also shown in the figure with different symbols. Figure 1 315 

indicates that DREAM can smoothly converge to the true values within the given function 316 

evaluations, while AM exhibits difficulty in the approximation of the correct values, although it 317 

can eventually converge to the true values with the iterations doubled (results not shown here). 318 

This case study suggests that DREAM is more efficient than AM for high-dimensional problems. 319 

3.2 Case study II: a 10-dimensional Cauchy distribution function 320 

The second case study considers a 10-dimensional Cauchy distribution centered at zeros 321 

and having identity matrix as its scale matrix. The marginal density in one dimension is shown in 322 

Figure 2 (b) and (d) as the red curve. This test function represents the type of problems with 323 

heavy tails. It is well known that MCMC schemes with Gaussian-shaped proposals have 324 

difficulty in sampling the heavy-tailed distributions because the Gaussian probability density 325 

function decays much faster than the heavy-tailed functions. This can cause the AM method to 326 

fail to converge due to inefficient sampling. As shown in Figure 2 where we took the parameter 327 

samples of one dimension as an example, Figure 2 (a) depicts the trace plot of x1 from the AM 328 

chain for the second half of total one million iterations. The figure indicates that in a long period 329 

of iterations the chain of AM has no updates and is stuck in certain areas of the parameter space 330 

that have negligible probabilities in the target distribution, resulting in a histogram dramatically 331 

different from the true distribution in Figure 2 (b). In contrast, the DREAM sampler launched ten 332 

chains and each chain evolved 100,000 iterations, so that the total function evaluations were the 333 

same as the AM. The trace plot of the ten chains in Figure 2 (c) demonstrates that DREAM 334 
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exhibits a very good mixing of the individual paths, therefore its sampled histogram displays a 335 

near-perfect match with the true distribution in Figure 2 (d). This case study suggests that 336 

DREAM is able to sample these heavy-tailed distributions more efficiently than MCMC 337 

samplers with a Gaussian proposal such as the AM.       338 

3.3 Case study III: a 4-dimensional trimodal distribution function 339 

The third case study is a 4-dimensional trimodal distribution with three well-separated 340 

modes at -8, 0, and 8, respectively. The modes have increasing weights in density; from left to 341 

right the weights are 0.1, 0.3, and 0.6, respectively. The marginal probability density in one 342 

dimension of this distribution is shown in Figure 3 (a)-(d) as the red curve. This type of 343 

distribution is known for its difficulty to be approximated by the MCMC methods, because the 344 

three modes are so far isolated that the chains need to jump between modes and it is common for 345 

chains to get stuck in one mode with a few or even no visits to other modes for many iterations, 346 

which greatly increases the number of simulations needed for convergence. 347 

We implemented both the AM and DREAM algorithms using a million function 348 

evaluations. The AM used one chain with one million iterations long; we run the AM ten times 349 

and at each time the chain initialized with diverse starting points. The DREAM used four parallel 350 

chains with each chain evolving 250,000 iterations. Figure 3 (a)-(c) present the histograms of the 351 

sampled x1 from three independent runs of AM. As shown, AM exhibits a rather poor 352 

performance as each different trial converged to a different mode and none of the ten runs can 353 

capture all the three modes, resulting in an unreliable approximation of the target distribution. A 354 

single chain is typically incapable of dealing with this multimodal parameter space and providing 355 

an accurate characterization within a limited number of iterations. With multiple interacting 356 

chains running simultaneously, the simulation results can be significantly improved. As 357 
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demonstrated in Figure 3 (d), the histogram of the marginal distribution from DREAM agrees 358 

with the true mixture distribution very well. The density of the samples in each mode is 359 

consistent with the weight of each peak in the distribution. Attributed to the differential evolution 360 

technique defined in Eq. (4), DREAM allows for jumps between the different disconnected 361 

modes. As illustrated in Figure 3 (e), each different chain jumps back and forth between the three 362 

isolated modes with more visits in the mode having higher weight, resulting in a good mix of the 363 

individual paths and consequently a relatively fast convergence to the true distribution.  364 

4 Application to a terrestrial ecosystem model 365 

In this section, we apply the DREAM algorithm to the data assimilation linked ecosystem 366 

carbon (DALEC) model to estimate the posterior distributions of its parameters. In comparison, 367 

the AM algorithm is also applied. DALEC is a relatively simple carbon pool and flux model 368 

designed specifically to enable parameter estimation in terrestrial ecosystems. We used DALEC 369 

to evaluate the performance of AM and DREAM in model calibration; we compared their 370 

accurate simulations of the parameter PPDFs, model’s goodness-of-fit, and predictive 371 

performance of the calibrated models. Previous studies based on MCMC methods that use 372 

Gaussian proposals have not reported multimodality in the marginal PPDFs of the model 373 

parameters, so it is important to know whether the parameters have multimodality; if the 374 

multimodality exists, we assess whether or not DREAM can identify the multiple modes and 375 

improve the calibration results and thus the predictive performance.  376 

4.1 Description of the model and parameters for optimization 377 

The DALEC v1 model is used here (Williams et al., 2005; Fox et al., 2009) with some 378 

structural modifications (Safta et al., 2015). DALEC consists of six process-based submodels 379 

that simulate carbon fluxes between five major carbon pools: three vegetation carbon pools for 380 
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leaf, stem, and root; and two soil carbon pools for soil organic matter and litter. The fluxes 381 

calculated on any given day impact carbon pools and processes in subsequent days. 382 

The six submodels in DALEC are photosynthesis, phenology, autotrophic respiration, 383 

allocation, litterfall and decomposition. Photosynthesis is driven by the aggregate canopy model 384 

(ACM) (Williams et al., 2005), which itself is calibrated against the soil-plant-atmosphere model 385 

(Williams et al., 1996). DALEC v1 was modified to incorporate the phenology submodel used in 386 

Ricciuto et al. (2011), driven by six parameters. This phenology submodel controls the current 387 

leaf area index (LAI) proportion of the seasonal maximum LAI (laimax).  Spring LAI growth is 388 

driven by a linear relationship to growing degree days (gdd), while senescence and LAI loss are 389 

driven by mean air temperature. To simplify our model structure, senescence and LAI loss are 390 

considered to occur simultaneously.  In reality, leaves may still be present on the trees but 391 

photosynthetically inactive due to the loss of chlorophyll.  Here, this inactive LAI is considered 392 

to have fallen and is added to the litter pool.  To further reduce model complexity, the plant 393 

labile pool in DALEC v1 was removed and a small portion of stem carbon is instead removed to 394 

support springtime leaf growth each year. The six phenology parameters are a threshold for leaf 395 

out (gdd_min), a threshold for maximum leaf area index (gdd_max), the temperature for leaf fall 396 

(tsmin), seasonal maximum leaf area index (laimax), the rate of leaf fall (leaffall), and leaf mass 397 

per unit area (lma), respectively. Given the importance of maintenance respiration in other 398 

sensitivity analyses (Sargsyan et al., 2014), we expanded the autotrophic respiration submodel to 399 

explicitly represent growth respiration (as a fraction of carbon allocated to growth) and 400 

maintenance respiration with the base rate and temperature sensitivity parameters.  401 

So for the first three plant submodels, deciduous phenology has six parameters; ACM 402 

shares one parameter, lma, with the deciduous phenology and employs two additional 403 
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parameters, leaf C:N ratio (which is fixed at a constant of 25 in the simulation) and 404 

photosynthetic nitrogen use efficiency (nue); the autotrophic respiration model computes the 405 

growth and maintenance respiration components and is controlled by three parameters, the 406 

growth respiration fraction (rg_frac), the base rate at 25◦C (br_mr), and temperature sensitivity 407 

for maintenance respiration (q10_mr).  408 

The allocation model partitions carbon to several vegetation carbon pools. Leaf allocation 409 

is first determined by the phenology model, and the remaining available carbon is allocated to 410 

the root and stem pools depending on the fractional stem allocation parameter (astem). The litter 411 

fall model redistributes the carbon content from vegetation pools to litter pools and is based on 412 

the turnover times for stem (tstem) and root (troot). The last submodel is a decomposition model 413 

that simulates heterotrophic respiration and the decomposition of litter into soil organic matter 414 

(SOM). This model is driven by the temperature sensitivity of heterotrophic respiration (q10_hr), 415 

the base turnover times for litter (br_lit) and SOM (br_som) at 25◦C, and by the decomposition 416 

rate (dr) from litter to SOM. 417 

Model parameters are summarized in Table 1. These parameters were grouped according 418 

to the six submodels that employ them, except for lma that impacts both the deciduous leaf 419 

phenology and ACM. The nominal values and numerical ranges for these parameters were 420 

designed to reflect average values and broad uncertainties associated with the temperate 421 

deciduous forest plant functional type that includes Harvard Forest (Fox et al., 2009; White et al., 422 

2000; Ricciuto et al., 2011). Observed air temperature, solar radiation, vapor pressure deficit, and 423 

CO2 concentration were used as boundary conditions for the model. 424 

In order to reduce computational time, we employed transient assumptions for running 425 

DALEC. That is, for any given set of parameter values, DALEC was run one cycle only for 15 426 
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years between 1992-2006 where observation data are available. Under this assumption, four 427 

additional parameters were used to describe the initial states of two vegetation carbon pools 428 

(stemc_init and rootc_init) and the two soil carbon pools (litc_init and somc_init), as also 429 

summarized in Table 1. Thus, a total of 21 parameters were considered and estimated in this 430 

study. 431 

4.2 Calibration data 432 

The calibration data consist of the Harvard Forest daily net ecosystem exchange (NEE) 433 

values, which were processed for the NACP site synthesis study (Barr et al., 2013) based on flux 434 

data measured at the site (Urbanski et al., 2007). The daily observations cover a period of 15 435 

years starting with the year 1992 and part of the data in the year 2005 is missing. Hill et al. 436 

(2012) estimated that daily NEE values followed a normal distribution, with standard deviations 437 

estimated by bootstrapping half-hourly NEE data (Papale et al., 2006; Barr et al., 2009). These 438 

standard deviations have values between 0.2 and 2.5, with the mean value about 0.7. Total 14 439 

years NEE data (years from 1992 to 2004 and year 2006) were considered here for model 440 

calibration and their corresponding standard deviations were used to construct the diagonal 441 

covariance matrix of the Gaussian likelihood function by assuming the data are uncorrelated.  442 

4.3 Numerical experiments and calibration results 443 

Both AM and DREAM were implemented to estimate the 21 parameters of the DALEC 444 

model using the PPDFs. To avoid the influence of prior distributions on the investigation of the 445 

posteriors estimated by the two algorithms, uniform priors were used for all parameters with the 446 

ranges specified in Table 1. DREAM launched ten parallel chains starting at values randomly 447 

drawn from the parameter prior distributions; and each chain evolved 300,000 iterations. Chain 448 

convergence was assessed via the Gelman Rubin   R̂  statistic. Figure 4 (b) plots the   R̂  values of 449 
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the 21 parameters for the last 100,000 iterations. The figure suggests that the last 50,000 samples 450 

of each chain (i.e., total 500,000 samples from ten chains) can be used for the PPDF 451 

approximation as the   R̂  has values below the threshold of 1.2.  452 

AM used one chain and the chain has the same initialization with DREAM. In addition, 453 

AM also requires the initialization of the covariance matrix of its Gaussian proposal. To facilitate 454 

the convergence of AM, we constructed the initial covariance C0 based on the first 200,000 455 

samples from the DREAM simulation. We conducted ten independent AM runs, so the same   R̂  456 

statistic can be used for convergence diagnosis. As AM is a single-chain algorithm, to make a 457 

fair comparison with the multi-chain algorithm of DREAM, each AM chain simulated 3,000,000 458 

samples, so that the number of function evaluations in one AM chain is the same with that of 459 

DREAM using ten chains. The   R̂  values of all parameters based on the ten AM runs for the last 460 

1,000,000 iterations are shown in Figure 4 (a). The figure indicates that AM has converged and 461 

the last 500,000 samples from one chain were used for the PPDF approximation.  462 

The estimated PPDFs from AM and DREAM are presented in Figure 5, and the optimal 463 

parameter estimates, as represented by the maximum a posteriori (MAP), are summarized in 464 

Table 1. Both AM and DREAM results show that all the 21 parameters can be well constrained 465 

by the calibration data, although some studies reported that eddy-covariance observations along 466 

could not identify all the model parameters with their posterior distributions significantly smaller 467 

than their priors (Wang et al., 2007, Keenan et al., 2012, 2013). Whether a parameter is 468 

identifiable depends on the model, model parameters, and the calibration data. When the 469 

parameter related processes are necessary to simulate the model outputs whose corresponding 470 

observation data are sensitive to the parameters, the parameters can usually be identified and 471 

sometimes well constrained. For example, Keenan et al. (2013) showed that in their FöBAAR 472 

Biogeosciences Discuss., doi:10.5194/bg-2017-41, 2017
Manuscript under review for journal Biogeosciences
Discussion started: 22 February 2017
c© Author(s) 2017. CC-BY 3.0 License.



 22 

model with 40 parameters, many parameters couldn’t be constrained even with the consideration 473 

of several data streams together. They found that these unidentifiable parameters might be 474 

redundant in the model structure representation. Roughly speaking, for a simple model with a 475 

few number of parameters, the parameters can be more identifiable than the complex models 476 

with a large parameter size (Richardson et al., 2010, Weng and Luo, 2011). The DALAC model 477 

used in this study is a simple model with considering only six processes and five carbon pools, 478 

and all the 21 parameters were shown to be sensitive to the NEE data, despite that some are more 479 

sensitive than others (Safta et al, 2015). So it is not surprising that both AM and DREAM 480 

algorithms can constrain the parameters pretty well.    481 

In comparison of the results between AM and DREAM, Figure 5 indicates that they 482 

produced very similar PPDFs for many parameters, such as gdd_max, astem, br_som, rootc_init, 483 

and litc_init. However, for parameters tsmin and leaffall, the estimated PPDFs of the two 484 

algorithms are substantially different. This also can be seen in Table 1, where the differences of 485 

MAP values for most parameters are relatively small between the two algorithms, but for tsmin 486 

and leaffall, the relative difference was 38% and 94%, respectively. The parameter tsmin 487 

represents the temperature triggering leaf fall and the leaffall represents the rate of leaf fall on 488 

days when the temperature is below tsmin. We further analyzed the simulations of these two 489 

parameters from AM and DREAM in Figure 6. Figure 6 (a) and (b) illustrate two separated 490 

modes in the estimated marginal PPDFs of tsmin and leaffall obtained from DREAM, while AM 491 

only identifies one mode for both parameters and they dramatically differ from any modes 492 

simulated by DREAM. For example, the single mode of tsmin identified by AM gives a lower 493 

temperature threshold (meaning a later initiation of senescence) that is compensated by a higher 494 

estimate of leaffall rate compared to DREAM. As shown in the trace plots of Figure 6 (c) and 495 
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(d), all ten independent runs of AM converged to a single mode, with values of tsmin between 496 

4.8 to 5.0 and values of leaffall between 0.06 and 0.075. In contrast, each of the ten parallel 497 

chains of DREAM, as exhibited in Figure 6 (e) and (f), jumps back and forth between two 498 

modes. And the two parameters compensate each other by jumping in opposite directions, where 499 

tsmin is more likely to be near the mode with a smaller value of 7.9 than that of 8.35 and leaffall 500 

is more likely to be near the mode of a larger value of 0.035 than that of 0.031.  501 

In addition, the simulated joint PPDFs of the two parameters, tsmin and leaffall, are 502 

different between AM and DREAM. As illustrated in Figure 7, AM results exhibit a negligible 503 

correlation between the two parameters with the correlation coefficient of -0.042, while DREAM 504 

results show that the two parameters are strongly negatively correlated with the correlation 505 

coefficient of -0.95. As demonstrated in Figure 7 (b), the samples of tsmin and leaffall from 506 

DREAM fall almost perfectly on the line with slope of -1, where the mode with smaller tsmin 507 

values corresponds to the mode of larger leaffall and the similar correspondence can be found for 508 

the other pair of modes.  509 

The existence of two modes for tsmin and leaffall and the negative correlation between the 510 

two parameters are not unreasonable as we used multiple years of observations for parameter 511 

estimation. It is possible that in some years the senescence was triggered later (i.e., a smaller 512 

tsmin) but proceded at a faster rate (i.e., a larger leaffall), while in some other years the 513 

senescence was triggered earlier (i.e., a larger tsmin) but proceded at a slower rate (i.e., a smaller 514 

leaffall).  Given our model simplification of concurrent senescence and leaf fall and our use of 515 

NEE rather than LAI observations as a constraining variable, we note that these optimized 516 

parameters are more likely to reflect the process of chlorophyll loss than actual leaf loss.  Cool 517 

temperatures are a key driver of senescence at this site (Richardson et al., 2006).  518 
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Figure 8 (a) highlights the years in red where the model based on the right mode of tsmin 519 

and the left mode of senescence rate (leaffall) has a better fit to the observed NEE, i.e., years 520 

1994, 1995, 1998, 1999, and 2006. The remaining years are highlighted in blue where the left 521 

mode of tsmin and the right mode of leaffall result in a better model fit. Taking years 1992 and 522 

1994 as an example, we examined the leaf area index (LAI) in the period of senescence. Figure 8 523 

(b) shows that at the first few days of September in both years, the values of LAI were the same 524 

around 2.0; after that the timing of senescence during the two years differs dramatically. In year 525 

1994, the value of LAI started decreasing on September 7th, and then decreased slowly over 526 

several distinct cool periods during the rest of September and early October until it hit zero in 527 

November 7th; the process took about 61 days. In contrast, in year 1992, the value of LAI 528 

remained near the maximum value during all of September, then dropped rapidly in October and 529 

hit zero also on November 7th; this process took about 40 days. The changes in the LAI between 530 

the two years reflect the variability in the time of year when the leaves start to drop and the rate 531 

of leaf drop. Although the leaf fall in 1992 was triggered later than in 1994, the leaves in 1992 532 

dropped at a faster rate, resulting in LAI approaching zero at the same time of the year.        533 

Figure 8 (c) depicts the recorded lowest temperature of the days between September 1st and 534 

November 20th for years 1992 and 1994, where the red line highlights the period between the 535 

first leaf and the last leaf drops in 1994.  The blue line highlights the corresponding period of 536 

leaf fall in 1992. Since the senescence was triggered in the early September of 1994, the 537 

temperature of triggering leaf fall was relatively high, about 8.1oC (associated with the higher 538 

mode of tsmin) as shown in Figure 8 (c). In the rest days of September in 1994 following the 539 

senescence trigger, temperatures remained warm. The slower leaf fall rate associated with 540 

periodic warm conditions (temperatures above tsmin) and the lower mode of leaffall caused a 541 
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slow leaf fall in September of 1994 as shown in Figure 8 (b). In comparison, in 1992, senescence 542 

was triggered at the end of September with a low temperature of 2.6oC. Then in October with 543 

colder temperatures, the leaves drop at a rapid rate associated with the consistent cold 544 

temperatures and higher mode of leaffall. Especially in late October, the temperatures are 545 

consistently below tsmin, causing a fast rate of leaf fall, as shown in Figure 8 (b) where the 546 

decreasing rate of the LAI in the late October of 1992 is very large. This indicates that a higher 547 

temperature trigger is usually associated with a lower leaf fall rate and vice versa.  548 

The bimodality identified in the DREAM simulation and examined in the scenarios above 549 

reflects the inability of the model structure to predict the observations consistently with a single 550 

set of parameters. This bimodality examined in DREAM may be caused in part by an incomplete 551 

representation of the senescence process. Using a temperature threshold (parameter tsmin) and a 552 

constant rate of leaf fall (parameter leaffall) to predict senescence is almost certainly an 553 

oversimplification. In reality, the process of senescence is also affected by day length. Longer 554 

days and warmer temperatures cause a relatively slow rate of leaf fall, whereas shorter days and 555 

cooler temperatures accelerate the rate that the leaves fall (Leigh et al, 2002; Saxena, 2010). The 556 

higher mode of tsmin means that senescence is initiated earlier, when day lengths are still 557 

relatively long. This may partially explain why this mode is associated with a lower mode of the 558 

leaffall parameter. Other factors not represented in DALEC are also likely to play a role such as 559 

soil moisture, or a more complex relationship with spring phenology (Keenan et al., 2015).   560 

The difference in estimated parameters between AM and DREAM causes different 561 

simulations of NEE, especially during the autumn. As an example, Figure 9 illustrates the 562 

comparison of the simulated NEE to observations for a month in Autumn of the year 1995 based 563 

on MAP estimates obtained under AM and DREAM. Visual inspection indicates that the 564 
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simulated NEE from the DREAM-calibrated parameters provides a better fit to the observations, 565 

as also indicated by the smaller root mean squared errors (RMSE). In addition, the maximum log 566 

likelihoods listed in Table 1 suggest that overall the DREAM-estimated parameters produce a 567 

better model fit to the observations, comparing -6578.3 with the smaller AM value of -6662.6. 568 

4.4 Assessment of predictive performance 569 

To further compare the calibration results between AM and DREAM, we explore their 570 

predictive skill based on the sampled PPDFs of model parameters. We employed the Bayesian 571 

posterior predictive distribution (Lynch and Western, 2004) to assess the adequacy of the 572 

calibrated models. Specifically, the posterior distribution for the predicted NEE data, p(y|D), is 573 

represented by marginalization of the likelihood over the posterior distribution of model 574 

parameters x as 575 

                                       
   
p(y | D) = p(y | x)∫ p(x | D)dx .                                        (5)  576 

In approximation of p(y|D), we used the converged MCMC samples from p(x|D). The last 500 577 

samples of each chain (total 500×10=5000 samples) were considered; for each parameter sample 578 

we drew 20 samples of the 14 years NEE data from their normal distributions, where the mean 579 

values are the model simulations. Then the total 100,000 prediction samples were used to 580 

approximate the posterior predictive density p(y|D).  581 

From the estimated p(y|D), we extracted the 95% confidence intervals for daily NEE 582 

values in the year 1995 and presented the results in Figure 10. The top panel corresponds to the 583 

results of AM and the bottom panel to DREAM. Overall, the predictive intervals from both 584 

algorithms cover well the observed NEE for the entire time range with occasional spikes outside 585 

the intervals. Closer visual inspection indicates that DREAM produces better predictive 586 

performance than AM. As seen during the period in October, the predictive interval of DREAM 587 
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can enclose most of the observed NEE while AM actually has under-prediction, causing the 588 

observations outside the intervals.  589 

In order to quantitatively compare the predictive performance of the calibrated models 590 

based on AM and DREAM, we defined two metrics, a probabilistic score called CRPS and 591 

predictive coverage. The CRPS (Gneiting and Raftery, 2007) measures the difference between 592 

the cumulative distribution function (CDF) of the observed data and that of the predicted data. 593 

The lower the value of the CRPS is, the better the predictive performance. The predictive 594 

coverage measures the percent of observations that fall within a given predictive interval. A 595 

larger value of the predictive coverage suggests better predictive performance. Figure 10 shows 596 

that AM gives a CRPS value of 0.48 while the value of DREAM is 0.43. The lower value of 597 

DREAM indicates that, on average, DREAM produces tighter marginal predictive CDF that are 598 

better centered around the NEE data, suggesting its superior predictive performance to AM in 599 

terms of both accuracy and precision. In addition, the predictive coverage of DREAM is larger 600 

than that of AM, attesting once again to its superior performance in prediction.   601 

4.5 Investigation of reliability of the algorithms 602 

Bayesian calibration of TEMs is challenging due to high model nonlinearity, high 603 

computational cost, a large number of model parameters, large observation uncertainty, and the 604 

existence of local optima. So, a robust and efficient MCMC algorithm is desired to give reliable 605 

probabilistic descriptions of the TEM parameters.  606 

In this section, we investigate the influence of the proposal initialization on the 607 

computational efficiency and reliability of AM. In above analysis, the initial covariance matrix 608 

C0 of AM was constructed based on DREAM samples before convergence. This setting 609 

facilitated the convergence of AM but resulted in AM false convergence to inaccurate PPDFs, 610 
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leading to a relatively poor calibration and prediction performance. We implemented another 611 

AM simulation here for further examination. In this new simulation, we constructed two 612 

independent AM chains; both chains initialized C0 using the DREAM samples after 613 

convergence, but one chain only used tsmin samples around its left mode and leaffall samples 614 

around its right mode, and the other chain used tsmin samples around its right mode and leaffall 615 

samples around its left mode. Each chain evolved 3,000,000 iterations, and for the last 1,000,000 616 

iterations the convergence diagnostic   R̂  values were calculated and shown in Figure 11 (a). The 617 

figure indicates that most parameters have   R̂  less than the threshold of 1.2 except parameters 618 

tsmin and leaffall whose values are far above 1.2 and no signs show that they are going 619 

significantly smaller in the following one million iterations. This suggests that the two chains 620 

converged to different optima for these two parameters. We then estimated PPDFs using the last 621 

500,000 samples from each chain respectively. The results for tsmin and leaffall are shown in 622 

Figure 11 (b)-(e). The figures illustrate that the samples from one AM chain can only identify 623 

one mode, and this mode is consistent with the samples used to construct the initial covariance 624 

matrix C0.  625 

As a single-chain sampler, it is conceptually possible for AM to become trapped in a single 626 

mode (Jeremiah et al., 2009). Consider a distribution with two far-separated modes and assume 627 

that the chain is initialized near one of the two modes (both samples initialization and proposal 628 

covariance initialization). At the beginning of the sampling, AM will explore the area around the 629 

mode where it is initialized and start identifying the first mode. Since the candidate samples 630 

generated by the Gaussian proposal have higher Metropolis ratios (Eq. (2)) in the nearby area 631 

than in the far-away regions of the identified mode, the chain is hardly to move to the other 632 

mode. When the Gaussian proposal covariance matrix Ct begins to update, the chance of the 633 
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chain jumping to the other mode depends on the relative scale of the proposal covariance and the 634 

distance between the two modes. When the modes separation exceeds the range of the proposal, 635 

AM is less likely to escape the identified local mode.  636 

Although the two AM chains can only simulate one of the two modes for tsmin and 637 

leaffall, the estimated PPDFs for the other 19 parameters from the two chains are close to each 638 

other and both similar to the DREAM results. This finding once again shows the reasonable 639 

existence of the two separated modes and their equivalent importance. With an improved 640 

initialization of C0 in the new simulation, the performance of AM also improved as it can 641 

accurately simulate uni-modal PPDFs and capture one mode for the multi-modal PPDFs. This 642 

investigation suggests that for AM an appropriate initialization of its Gaussian proposal has a 643 

significant impact on its performance. We made several test runs of AM and only when we 644 

initialized C0 using the complete set of converged DREAM samples, was the AM able to 645 

produce PPDFs similar to the ones resulted from DREAM with identifying all the possible 646 

optima. However, the information of a reasonable C0 in practice is either unavailable or very 647 

computationally expensive to obtain. 648 

5 Conclusions 649 

In this study we compare the performance of two MCMC algorithms, namely AM and 650 

DREAM, for sampling high-dimensional multi-modal posterior distributions for models that 651 

exhibit non-linear behavior. We present results obtained in canonical, manufactured 652 

configurations, as well as the terrestrial ecosystem model DALEC. The AM algorithm is 653 

sensitive to initial conditions when sampling multi-modal posteriors. By comparison, DREAM’s 654 

performance does not depend on initialization of the algorithm. Thus, DREAM is particularly 655 

suitable to calibrate complex terrestrial ecosystem models, where the existence of local optima is 656 
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always a concern and where often little information about the parameters is known in order to 657 

optimize the algorithm implementation. In this study, the application in an ecosystem carbon 658 

model indicates that, compared to the AM, the DREAM can accurately simulate the posterior 659 

distributions of the model parameters, resulting in a better model fit, superior predictive 660 

performance, and perhaps identifying structural errors or process differences between the model 661 

and ecosystem from which observations were used for calibration.   662 
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List of Tables 836 

Table 1. Nominal values and ranges of the 21 parameters for optimization in the DALEC model, 837 
and the maximum a posteriori (MAP) estimates based on the AM and DREAM samplers. 838 

 

ParName Nom. Val. Range 
MAP estimates 

AM 
LL=-6662.6 

DREAM 
LL=-6578.3 

D
ec

id
. P

he
n.

 

gdd_min 100 10–250 37.90 39.53 
gdd_max 200 50–500 203.44 201.77 

tsmin 5 0–10 4.88 7.87 
laimax 4 2–7 2.01 2.00 
leaffall 0.1 0.03–0.95 0.067 0.035 

lma 80 20–150 136.81 147.45 

A
C

M
 

nue 7 1–20 8.90 8.21 

A
. R

. q10_mr 2 1–4 1.00 1.00 
br_mr 10-4 10-5–10-2 7.39×10-3 6.35×10-3 
rg_frac 0.2 0.05–0.5 0.06 0.066 

A
. astem 0.7 0.1–0.95 0.75 0.74 

Li
t. 

Fa
l. tstem 1/(50×365) 1/(250×365) – 

1/(10×365) 1.98×10-5 1.63×10-5 

troot 1/(5×365) 1/(25×365) – 
1/365 8.55×10-4 7.88×10-4 

D
ec

om
p.

 

q10_hr 2 1–4 2.98 2.68 

br_lit 1/(2×365) 1/(5×365) – 
10/(5×365) 4.97×10-3 5.36×10-3 

br_som 1/(30×365) 1/(100×365) – 
1/(10×365) 2.79×10-5 2.88×10-5 

dr 10-3 10-4–10-2 2.46×10-3 3.39×10-3 

In
it.

 C
. 

stemc_init 5000 1000 – 15000 1070.9 1417.8 
rootc_init 500 100 – 3000 100.56 100.61 
litc_init 600 50 – 1000 60.74 66.77 

somc_init 7000 1000 – 25000 2029.1 4708.2 
Parameter units refer to Table 1 of Safta et al. (2015). The LL represents the log likelihood 839 
evaluated at the MAP parameter estimates; the larger the value is, the better the model fit.  840 
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List of Figures 841 

 842 

Figure 1. Simulated traces for the 50-dimensional Gaussian distribution based on the AM and 843 
DREAM sampler. The black line denotes the evolution of the mean of sampled x1; the green and 844 
blue lines depict the evolution of the sampled standard deviation (Std) of x10 and x50, 845 
respectively; and the red line denotes the evolution of the covariance between x5 and x30. The 846 
true values of these four statistics are indicated with different symbols at the right hand side in 847 
each plot.  848 
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 849 

Figure 2. Results for the 10-dimensional Cauchy distribution from AM and DREAM. Evolution 850 
of sampled x1 values (a) in one chain of AM and (c) in ten interacting chains of DREAM, where 851 
each chain is coded with a different color; and approximated (histogrm) and actual (red curve) 852 
marginal posterior distributions of x1 from (b) AM and (d) DREAM.   853 
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 854 

Figure 3. Results for the 4-dimensional trimodal distribution based on AM and DREAM. 855 
Approximated (histogrm) and actual (red curve) marginal posterior distributions of x1 from (a-c) 856 
three different runs of AM and (d) four interacting chains of DREAM; and (e) evolution of 857 
sampled x1 values with DREAM in the four chains, where each chain is coded with a different 858 
color.  859 
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 860 

Figure 4. Gelman Rubin   R̂  statistics of all the 21 parameters in the DALEC model (a) for the 861 
last 1,000,000 iterations from ten independent AM runs and (b) for the last 100,000 iterations 862 
from the DREAM simulation using ten chains. The values less than the threshold of 1.2 suggest 863 
chain convergence.  864 
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 865 

 866 

Figure 5. Estimated marginal posterior probability density functions (PPDF) of the 21 parameters 867 
in DALEC model based on the AM and DREAM algorithms.  868 
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 869 

Figure 6. AM and DREAM results for parameters tsmin and leaffall in the DALEC model. The 870 
estimated marginal posterior distributions of (a) tsmin and (b) leaffall; Trace plots of (c) sampled 871 
tsmin and (d) sampled leaffall with AM using ten independent chains; and trace plots of (e) 872 
sampled tsmin and (f) sampled leaffall with DREAM using ten interacting chains. The evolution 873 
of each chain is coded with a different color.    874 
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 875 

Figure 7. Posterior distributions of parameters tsmin and leaffall simulated by (a) AM and (b) 876 
DREAM. AM simulation results exhibit a negligible correlation coefficient (corr) between the 877 
two parameters with a value of -0.042, while DREAM results show that the two parameters are 878 
strongly correlated with the corr value of -0.95.  879 
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 880 

Figure 8. (a) Observed NEE with years highlighted in red where the left mode of tsmin has a 881 
better model fit and years hightlighted in blue where the right mode of tsmin has a better model 882 
fit; (b) the simulated leaf area index (LAI) of years 1992 and 1994; and (c) the recorded lowest 883 
temperature of years 1992 (blue) and 1994 (red). The blue and red lines in (c) highlight the 884 
corresponding periods of leaf fall until LAI becomes zero for 1992 and 1994, respectively. The 885 
color scheme is synchronized between (a), (b), and (c) frames. Note that decreases in LAI as 886 
predicted by our simplified version of DALEC reflect cholorphyll loss rather than leaf drop.  887 
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 888 

Figure 9. Simulated NEE values based on the optimal parameters (i.e., the MAP values listed in 889 
Tablel 1) estimated by the AM and DREAM algorithms for October, 1995. The Root Mean 890 
Square Error (RMSE), indicates that DREAM produces a better model fit than AM.  891 
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 892 

Figure 10. 95% confidence intervals of the simulated NEE values in year 1995 based on the 893 
parameter samples from AM and DREAM. Two measures of predictive performance, CRPS 894 
statistic and predictive coverage, indicate that DREAM outperforms AM in prediction.   895 
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 896 

Figure 11. Results of two independent chains of AM with the initial covariance matrix 897 
constructed using the converged DREAM samples. The   R̂  statistic in (a) suggests that different 898 
AM chains converged to different tsmin and leaffall values. One chain captures (b) the left mode 899 
of tsmin and (c) the corresponding right mode of leaffall; and the other chain identifies (d) the 900 
right mode of tsmin and (e) the corresponding left mode of leaffall. No single AM chain can 901 
capture all the modes of the two parameters within a reasonable number of MCMC iterations.   902 
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