

1 **Bayesian calibration of terrestrial ecosystem models: A study of**
2 **advanced Markov chain Monte Carlo methods**
3

4 **Dan Lu^{1,*}, Daniel Ricciuto², Anthony Walker², Cosmin Safta³, and William Munger⁴**

5

6 ¹Computer Science and Mathematics Division, Climate Change Science Institute, Oak Ridge
7 National Laboratory, Oak Ridge, TN, USA;

8 ²Environmental Sciences Division, Climate Change Science Institute, Oak Ridge National
9 Laboratory, Oak Ridge, TN, USA;

10 ³Sandia National Laboratories, Livermore, CA, USA;

11 ⁴School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA;

12

13 *Corresponding author: Dan Lu (lud1@ornl.gov)

14

15

16

17

18

19

20

21

Abstract

22 Calibration of terrestrial ecosystem models is important but challenging. Bayesian inference
23 implemented by Markov chain Monte Carlo (MCMC) sampling provides a comprehensive
24 framework to estimate model parameters and associated uncertainties using their posterior
25 distributions. The effectiveness and efficiency of the method strongly depend on the MCMC
26 algorithm used. In this study, a Differential Evolution Adaptive Metropolis (DREAM) algorithm
27 was used to estimate posterior distributions of 21 parameters for the data assimilation linked
28 ecosystem carbon (DALEC) model using 14 years of daily net ecosystem exchange data
29 collected at the Harvard Forest Environmental Measurement Site eddy-flux tower. The DREAM
30 is a multi-chain method and uses differential evolution technique for chain movement, allowing
31 it to be efficiently applied to high-dimensional problems, and can reliably estimate heavy-tailed
32 and multimodal distributions that are difficult for single-chain schemes using a Gaussian
33 proposal distribution. The results were evaluated against the popular Adaptive Metropolis (AM)
34 scheme. DREAM indicated that two parameters controlling autumn phenology have multiple
35 modes in their posterior distributions while AM only identified one mode. The calibration of
36 DREAM resulted in a better model fit and predictive performance compared to the AM.
37 DREAM provides means for a good exploration of the posterior distributions of model
38 parameters. It reduces the risk of false convergence to a local optimum and potentially improves
39 the predictive performance of the calibrated model.

40 **Keywords:** Bayesian calibration, MCMC sampling, AM algorithm, DREAM algorithm, DALEC
41 model, multimodality, terrestrial ecosystem models.

42 **1 Introduction**

43 Prediction of future climate heavily depends on accurate predictions of the concentration of
44 carbon dioxide (CO₂) in the atmosphere. Predictions of atmospheric CO₂ concentrations rely on
45 terrestrial ecosystem models (TEMs) to simulate the CO₂ exchange between the land surface and
46 the atmosphere. TEMs typically involve a large number of biogeophysical and biogeochemical
47 processes, the representation of which requires knowledge of many process parameters. Some
48 parameters can be determined directly from experimental and measurement data, but many are
49 also estimated through model calibration. Estimating these parameters indirectly from
50 measurements (such as the net ecosystem exchange (NEE) data) is a challenging inverse
51 problem.

52 Various parameter estimation methods have been applied to TEMs. For an overview, one
53 can refer to the OptIC (Optimization InterComparison) project (Trudinger et al., 2007) and the
54 REFLEX (REgional FLux Estimation eXperiment) project (Fox et al., 2009). In classical
55 optimization based approaches, inverse problems with a large number of parameters can often be
56 ill-posed in that the solution may not be unique or even may not exist (O'Sullivan, 1986). As an
57 alternative approach, the Bayesian framework provides a comprehensive solution to this
58 problem. In Bayesian methods, the model parameters are treated as random variables and their
59 posterior probability density functions (PPDFs) represent the estimation results. The PPDF
60 incorporates prior knowledge of the parameters, mismatch between model and observations, and
61 observation uncertainty (Lu et al., 2012). Thus, compared to other approaches in inverse
62 problems, Bayesian inference not only estimates model parameters, but also quantifies associated
63 uncertainty using a full probabilistic description.

64 Two types of Bayesian methods are widely used in parameter estimation of TEMs,
65 variational data assimilation (VAR) methods (Talagrand and Courtier, 1987) and Markov chain
66 Monte Carlo (MCMC) sampling. VAR methods are computationally efficient, however, they
67 assume that the prior parameter values and the observations follow a Gaussian distribution, and
68 they require the model to be differentiable with respect to all parameters for optimization. In
69 addition, VAR methods can only identify a local optimum and approximate the PPDF by a
70 Gaussian function (Rayner et al, 2005; Ziehn et al., 2012). In contrast, MCMC sampling makes
71 no assumptions about the structure of the prior and posterior distributions of model parameters or
72 observation uncertainties. Moreover, the MCMC methods, in principle, can converge to the true
73 PPDF with an identification of all possible optima. Although it is more computationally intensive
74 than VAR approaches, MCMC sampling is being increasingly applied in the land surface
75 modeling community (Dowd, 2007; Zobitz et al, 2011).

76 One widely used MCMC algorithm is adaptive Metropolis (AM) (Haario et al. 2001). For
77 example, Fox et al. (2009) applied the AM in their comparison of different algorithms for the
78 inversion of a terrestrial ecosystem model; Järvinen et al. (2010) utilized the AM for estimation
79 of ECHAM5 climate model closure parameters; Hararuk et al. (2014) employed the AM for
80 improvement of a global land model against soil carbon data; and Safta et al. (2015) used the
81 AM to estimate parameters in the data assimilation linked ecosystem carbon model. The AM
82 algorithm uses a single Markov chain that continuously adapts the covariance matrix of a
83 Gaussian proposal distribution using the information of all previous samples collected in the
84 chain so far (Haario et al., 1999). As a single-chain method, AM has difficulty in traversing
85 multi-dimensional parameter space efficiently when there are numerous significant local optima;
86 and AM can be unreliable for estimating the PPDFs of the parameters that exhibit strong

87 correlation. In addition, the AM algorithm uses a multivariate Gaussian distribution as the
88 proposal to generate candidate samples and evolve the chain. AM, therefore, particularly suitable
89 for Gaussian shaped PPDFs, but it may not converge properly to the distributions with multiple
90 modes and those with heavy tails like the Cauchy distributions. Moreover, AM suffers from
91 uncertainty about how to initialize the covariance of the Gaussian proposal. Poor initialization of
92 the proposal covariance matrix results in slow adaptation and inefficient convergence.

93 The Gaussian proposal is also widely used in non-AM MCMC studies that involve TEMs.
94 For example, Ziehn et al. (2012) used the Gaussian proposal for the MCMC simulation of the
95 BETHY model (Knorr and Heimann, 2011) and Ricciuto et al. (2008, 2011) utilized the
96 Gaussian proposal in their MCMC schemes to estimate parameters in a terrestrial carbon cycle
97 model. The single-chain and Gaussian-proposal MCMC approaches have limitations in
98 sufficiently exploring the full parameter space and share low convergence in sampling the non-
99 Gaussian shaped PPDFs and thus may end up with a local optimum with inaccurate uncertain
100 representation of the parameters. Therefore, this poses a question on whether the AM and the
101 widely used MCMC algorithms with Gaussian proposal generate a representing sample of the
102 posterior distributions of the underlying model parameters. While we expect that
103 computationally expensive sampling methods for parameter estimation yield a global optimum
104 with an accurate probabilistic description, in reality, we may in many cases obtain a local
105 optimum with an inaccurate PPDF due to the limitations of these algorithms.

106 In this study, we employ the differential evolution adaptive Metropolis (DREAM)
107 algorithm (Vrugt et al., 2008, 2009a; Zhang et al., 2013; Lu et al., 2014) for an accurate Bayesian
108 calibration of an ecosystem carbon model. The DREAM scheme runs multiple interacting chains
109 simultaneously to explore the entire parameter space globally. During the search, DREAM does

110 not rely on a specific distribution, like the Gaussian distribution used in most MCMC schemes,
111 to move the chains. Instead, it uses the differential evolution optimization method to generate the
112 candidate samples from the collection of chains (Price et al., 2005). This feature of DREAM
113 eliminates the problem of initializing the proposal covariance matrix and enables efficient
114 handling of complex distributions with heavy tails and strong correlations. In addition, as a
115 multi-chain method, DREAM can efficiently sample multimodal posterior distributions with
116 numerous local optima. Thus, the DREAM scheme is particularly applicable to complex and
117 multimodal optimization problems.

118 While multimodality is a potential feature of parameters in complex models (Thibault et al,
119 2011; Zhang et al., 2013), its existence has not been well documented in terrestrial ecosystem
120 modeling due to the limitations of methods that have been applied in most previous studies. Here
121 we apply both the DREAM and the AM methods to three benchmark functions and a TEM to
122 estimate the parameter distributions. In the latter case, we estimate the PPDFs of 21 process
123 parameters in the data assimilation linked ecosystem carbon (DALEC) model. The objectives of
124 this study are to (1) present a statistically sound methodology to solve the parameter estimation
125 problems in complex TEMs and to improve the model simulation; (2) characterize parameter
126 uncertainty in detail using accurately sampled posterior distributions; and (3) investigate the
127 effects of model calibration methods on parameter estimation and model performance. This work
128 should provide ecological practitioners with valuable information on model calibration and
129 understanding of the TEMs.

130 In the following Section 2, we first briefly summarize the general idea of Bayesian
131 calibration, and describe the AM and DREAM algorithms. Then in Section 3, we compare the
132 performance of the two algorithms in sampling three known target distributions. Next in Section

133 4, the application of the DREAM algorithm to the DALEC model is presented and discussed; in
134 comparison, we also discussed the results from the AM sampler. Finally in Section 5, we close
135 this paper with our main conclusions.

136 **2 Bayesian calibration and MCMC simulation**

137 **2.1 Bayesian calibration**

138 Bayesian calibration of a model states that the posterior distribution $p(\mathbf{x}|\mathbf{D})$ of the model
139 parameters \mathbf{x} , given observation data \mathbf{D} , can be obtained from the prior distribution $p(\mathbf{x})$ of \mathbf{x} and
140 the likelihood function $L(\mathbf{x}|\mathbf{D})$ using Bayes' theorem (Box and Tiao, 1992) via,

141
$$p(\mathbf{x}|\mathbf{D}) = cL(\mathbf{x}|\mathbf{D})p(\mathbf{x}) \quad (1)$$

142 where c is a normalization constant. The prior distribution represents the prior knowledge about
143 the parameters. It is usually inferred from information of previous studies in similar sites or from
144 expert judgment. In the lack of prior information, a common practice is to use uninformative
145 priors within relatively wide parameter ranges such that the prior distribution has little influence
146 on the estimation of the posterior distribution.

147 The likelihood function measures the model fits to the observations. Selecting a likelihood
148 function suitable to a specific problem is still under study (Vrugt et al., 2009b). A commonly
149 used likelihood function is based on the assumption that the differences between the model
150 simulations and observations are multivariate normally distributed, leading to a Gaussian
151 likelihood such as the work of Fox et al. (2009), Hararuk et al. (2014), and Ricciuto et al. (2008,
152 2011). In this work, we also use the Gaussian likelihood, with uncorrelated variances that are
153 evaluated from the provided daily observation uncertainties. The effect of data correlations on
154 the inferred parameters was assessed in our previous study (Safta et al., 2015).

155 2.2 MCMC sampling

156 In most environmental problems, the posterior distribution cannot be obtained with an
157 analytical solution and is typically approximated by sampling methods such as MCMC. The
158 MCMC method approximates the posterior distribution by constructing a Markov chain whose
159 stationary distribution is the target distribution of interest. As the chain evolves and approaches
160 the stationary, all the samples after chain convergence are used for posterior distribution
161 approximation, and the samples before convergence, which are affected by the starting states of
162 the chain, are discarded. The earliest MCMC approach is the well-known random walk
163 Metropolis sampler (Metropolis et al., 1953). Assume at iteration t we have obtained the samples
164 $\{\mathbf{x}_0, \mathbf{x}_1, \dots, \mathbf{x}_t\}$, where \mathbf{x}_0 is the initial sample from a certain distribution (e.g., the parameter prior
165 distribution). Then the Markov chain evolves in the following way. First, a candidate point \mathbf{z} is
166 sampled from a symmetric proposal distribution q , which has the property $q(\mathbf{z}|\mathbf{x}_t) = q(\mathbf{x}_t|\mathbf{z})$.
167 Next, the candidate point is either accepted or rejected according to a Metropolis ratio α
168 calculated as

$$169 \alpha = \begin{cases} \min\left[\frac{p(\mathbf{z}|\mathbf{D})}{p(\mathbf{x}_t|\mathbf{D})}, 1\right] & \text{if } p(\mathbf{x}_t|\mathbf{D}) > 0 \\ 1 & \text{if } p(\mathbf{x}_t|\mathbf{D}) = 0 \end{cases} \quad (2)$$

170 where $p(\mathbf{z}|\mathbf{D})$ and $p(\mathbf{x}_t|\mathbf{D})$ denote the density of the posterior distribution evaluated at \mathbf{z} and \mathbf{x}_t ,
171 respectively. Lastly, if the candidate is accepted, the chain uses the sample $\mathbf{x}_{t+1} = \mathbf{z}$ at iteration
172 $t+1$; otherwise, it keeps the current sample $\mathbf{x}_{t+1} = \mathbf{x}_t$.

173 The Metropolis sampler is the basis of many existing MCMC sampling schemes. The well-
174 constructed MCMC schemes have been theoretically proven to converge to the appropriate target
175 distribution $p(\mathbf{x}|\mathbf{D})$ under certain regularity conditions (Robert and Casella, 2004, p.270).
176 However, in practice the convergence rate is often impractically slow, which suggests that within

177 a limited finite number of iterations, some inefficient schemes may result in an unrealistic
178 distribution. The inefficiency is typically resulted from an inappropriate choice of the proposal
179 distribution used to generate the candidates. Either wide or narrow proposal distribution can
180 cause inefficient chain mixing and slow chain convergence (Lu et al., 2014). Hence, the
181 definition of the proposal distribution is crucial and determines the efficiency and the practical
182 applicability of the MCMC simulation.

183 **2.3 AM algorithm**

184 The adaptive Metropolis (AM) algorithm is a modification to the standard Metropolis
185 sampler (Haario et al., 2001). The key feature of the AM algorithm is that it uses a single
186 Markov chain that continuously adapts to the target distribution via its calculation of the proposal
187 covariance using all previous samples in the chain. The proposal distribution employed in the
188 AM algorithm is a multivariate Gaussian distribution with means at the current iteration \mathbf{x}_t and a
189 covariance matrix C_t that is updated along the chain evolution. To start the chain, the AM first
190 selects an arbitrary, strictly positive definite initial covariance C_0 according to the best prior
191 knowledge that may be very poor. Then after a certain number of iterations T , the covariance is
192 updated based on the samples gained so far,

$$193 C_t = \begin{cases} C_0, & t \leq T \\ s_d \text{Cov}(\mathbf{x}_0, \dots, \mathbf{x}_t) + s_d \varepsilon I_d, & t > T \end{cases} \quad (3)$$

194 where ε is a small value chosen to ensure C_t does not become singular, I_d denotes the d -
195 dimensional identity matrix and s_d is a scaling parameter depending on the dimensionality of the
196 parameter \mathbf{x} to ensure reasonable acceptance rates. As a basic guideline, Haario et al. (2001)
197 suggested choosing the value $s_d = 2.4^2/d$, which is shown to be optimal for Gaussian targets and
198 Gaussian proposal distributions (Gelman et al., 1995).

199 To apply the AM algorithm, an initial covariance C_0 must be defined. The choice of C_0
200 critically determines the success of the algorithm. For example, when the variance of C_0 is too
201 large, it is possible that no proposals are accepted within an iteration, and that the chain will
202 remain at the initial state without any movement. This situation continues as the chain evolves,
203 and the use of updated C_t would not make any difference because the variances of C_t are
204 essentially zero since all the previous samples have the same values. In this case, the AM
205 sampler would get stuck in the initial state without exploring the parameter space. To alleviate
206 this problem and start the AM fairly efficiently, we can define C_0 based on some prior
207 knowledge about the target distribution. When such information is not available, which is usually
208 the case for complex models, some test simulations are needed. For example, Hararuk et al.
209 (2014) inferred C_0 from a test run of 50,000 community land model simulations in estimating the
210 PPDFs of soil carbon related parameters.

211 The construction of C_t is another critical influence on the AM performance. In practice,
212 some adjustments on C_t are necessary to improve the AM efficiency. For example, on the basis
213 of Eq. (3), the C_t can be shrunk or amplified by some constant according to the chain evolution.
214 When the chain does not have enough movement after a large number of iterations, we shrink C_t
215 a little bit to increase acceptance of new samples, and vice versa. The techniques used in the
216 formulation of C_0 and C_t may improve the AM efficiency in some degree for some problems.
217 However, the computational cost spent on applying these techniques is not negligible (such as
218 the test runs used for determining the C_0) and some strategies even require artificial control (such
219 as manual adjustment of the scaling factor of C_t). Moreover, determining a reasonable C_0 and C_t
220 become very difficult for high-dimensional problems.

221 To improve efficiency in high-dimensional case, Haario et al. (2006) extended the standard
222 AM method to componentwise adaptation. This strategy applies the AM on each parameter
223 separately. The proposal distribution of each component is a 1D normal distribution, which is
224 adapted in a similar manner as in the standard AM algorithm. However, the componentwise
225 adaptation does not work well for distributions with a strong correlation. Safta et al. (2015)
226 applied an iterative algorithm to break the original high-dimensional problem into a sequence of
227 steps of increasing dimensionality, with each intermediate step starting with an appropriate
228 proposal covariance based on a test run. This technique provided a rather reasonable proposal
229 distribution, but the computational cost used to define the proposal was rather high.

230 AM is a single-chain method. As a single chain, it is particularly difficult to judge the
231 convergence. Even the most powerful diagnostics cannot guarantee that the chain has converged
232 to the target distribution (Gelman and Shirley, 2011). One solution to alleviate the problem is
233 running multiple independent chains with widely dispersive starting points and then using the
234 diagnostics for multi-chain schemes, such as the \hat{R} statistic of Gelman and Rubin (1992), to
235 check convergence. The \hat{R} statistic calculates the ratio of between-chain variance to with-in
236 chain variance. When the chain has a good mixing and all the chains converge to the same
237 PPDF, the \hat{R} value is close to one, and in practice the threshold of 1.2 is usually used for
238 convergence diagnosis. On the other hand, when the chain does not mix well and different chains
239 converge to the different portion of the target distribution, it is unlikely that the \hat{R} will reach the
240 value of 1.2 required to declare convergence. Generally, this situation suggests that multiple
241 modes exist in the target PPDF and the AM sampler is unable to identify all the modes using a
242 single chain.

243 **2.4 DREAM algorithm**

244 The DREAM algorithm is a multi-chain method (Vrugt, 2016). Multi-chain approaches use
245 multiple chains running in parallel for global exploration of the posterior distribution, so they
246 have several desirable advantages over the single-chain methods, particularly when addressing
247 complex problems involving multimodality and having a large number of parameters with strong
248 correlations. In addition, the application of multiple chains allows utilizing a large variety of
249 statistical measures to diagnose the convergence including the \hat{R} statistic mentioned above.

250 DREAM uses the Differential Evolution Markov Chain (DE-MC) algorithm (ter Braak,
251 2006) as its main building block. The key feature of the DE-MC scheme is that it does not
252 specify a particular distribution as the proposal, but proposes the candidate point using the
253 differential evolution method based on current samples collected in the multiple chains. Thus,
254 DE-MC can apply to a wide range of problems whose distribution shapes are not necessarily
255 similar to the proposal distribution, and it also removes the requirement of initializing the
256 covariance matrix as in AM. As previously, we denote the sample at iteration t of a single chain
257 by a d -dimensional vector \mathbf{x}_t , then the samples from N chains at the iteration t construct a $N \times d$
258 matrix saved in \mathbf{X}_t ; usually $N=2d$. In DE-MC, the candidate point \mathbf{z}^i in each chain $i=\{1, 2, \dots, N\}$
259 are generated by taking a fixed multiple of the difference of two randomly chosen chains of \mathbf{X}_t
260 with indexes r_1 and r_2 , i.e.,

261
$$\mathbf{z}^i = \mathbf{x}_t^i + \gamma(\mathbf{X}_t^{r_1} - \mathbf{X}_t^{r_2}) + \boldsymbol{\varepsilon}, \quad r_1 \neq r_2 \neq i \quad (4)$$

262 where the multiplier γ is suggested as $2.4/\sqrt{2d}$ for its optimal performance, and for every 10th
263 iteration $\gamma=1.0$ to facilitate jumping between different modes; $\boldsymbol{\varepsilon}$ is drawn from a symmetric d -
264 dimensional distribution with a small variance compared to the width of the target distribution.
265 By accepting the candidate point with the Metropolis ratio defined in Eq. (2), a Markov chain is

266 obtained with its limiting distribution of the target PPDF, as proved in ter Braak (2006) and
267 Vrugt et al. (2008, 2009a). The DE-MC algorithm can successfully simulate the multimodal
268 distributions, because it directly uses the current location of the multiple chains stored in \mathbf{X} ,
269 instead of $\text{Cov}(\mathbf{X})$ from a single chain, to generate candidate points, allowing the possibility of
270 direct jumps between different modes. In addition, it has no difficulty in simulating the
271 distributions with heavy tails, because it does not use the Gaussian proposal whose function gets
272 small much faster than the heavy-tailed functions in the tails and thus causes sampling problems
273 as reported in Robert and Casella (2004) and demonstrated in Section 3 of this work.

274 The DREAM algorithm maintains the nice features of the DE-MC, but greatly accelerates
275 the chain convergence. First, DREAM generates the candidate sample based on the difference of
276 more than one pair of chains, which brings more information about the target distribution and
277 thus accelerates the convergence. Secondly, DREAM uses a subspace sampling strategy that
278 selectively updates only some parameters when generating a candidate sample. This strategy
279 improves efficiency in high-dimensional samplings as the performance of optimization
280 deteriorates exponentially with increasing dimensions. In addition, the subspace sampling
281 strategy also enables the number of chains less than the number of parameters, which reduces the
282 waste of computing resources, as each individual chain requires a certain portion of samples to
283 be discarded before converging to the target distribution. Thirdly, DREAM explicitly handles the
284 unproductive chains stuck in regions of the parameter space that are not contributing to the target
285 PPDF. This strategy of removing outlier chains is very important for multi-chain methods, as the
286 samples from these outlier chains will not only deteriorate the generation of the candidate points,
287 which thus slow down the movement of other robust chains, but even worse they may prevent
288 the convergence to the target distribution. For example, if one chain keeps sampling the area

289 isolated from the target distribution that other chains are sampling, it will make the \hat{R} statistic
290 almost impossible to reach the threshold of 1.2 required to declare convergence. Therefore,
291 DREAM detects the outlier chains and forces their current states to the positions of other well-
292 performed chains, which greatly speeds up the convergence. More information about the
293 DREAM algorithm was presented in Vrugt et al. (2008, 2009a, 2016) and Lu et al. (2014).

294 **3 Comparison between AM and DREAM algorithms**

295 It is useful to know the estimated PPDFs from a sampling algorithm are the desired target
296 posterior distributions. So, in this section we evaluate the performance of DREAM in sampling
297 three known target distributions and compare results with the widely used AM algorithm. The
298 three distributions are high-dimensional, heavy-tailed, and multimodal distributions that are
299 notoriously difficult to approximate with MCMC sampling and are typical problems in terrestrial
300 ecosystem modeling (Kinlan and Gaines, 2003; Stead et al., 2005; Thibault et al., 2011). In all
301 studies, the computational efficiency of the algorithms is evaluated by the accuracy of the
302 approximate posterior distribution for the same number of total function evaluations, although
303 DREAM uses multiple parallel chains and AM employs only one chain.

304 **3.1 Case study I: a 50-dimensional Gaussian distribution function**

305 The first case study is a high-dimensional convex problem. The test function is a 50-
306 dimensional (50 parameters) multivariate Gaussian distribution with the mean at the zeros. The
307 covariance matrix was constructed such that the variance of the i th dimension is equal to $0.1 \times i \times i$
308 and the covariance of i th and j th variables is calculated as $0.05 \times i \times j$. Both the AM and DREAM
309 located the initial states of the chains from a uniform distribution $\mathbf{x}_0 \in U[-50, 50]^{50}$. Besides,
310 AM used an identity matrix as its initial covariance C_0 . DREAM used ten parallel chains and
311 AM run a single chain.

312 The simulation results of 100,000 function evaluations for both AM and DREAM are
313 summarized in Figure 1, which depicts the evolution of the sample mean of parameter x_1 ,
314 standard deviations of parameters x_{10} and x_{50} , and the covariance between parameters x_5 and x_{30} .
315 The true values of these statistics were also shown in the figure with different symbols. Figure 1
316 indicates that DREAM can smoothly converge to the true values within the given function
317 evaluations, while AM exhibits difficulty in the approximation of the correct values, although it
318 can eventually converge to the true values with the iterations doubled (results not shown here).
319 This case study suggests that DREAM is more efficient than AM for high-dimensional problems.

320 **3.2 Case study II: a 10-dimensional Cauchy distribution function**

321 The second case study considers a 10-dimensional Cauchy distribution centered at zeros
322 and having identity matrix as its scale matrix. The marginal density in one dimension is shown in
323 Figure 2 (b) and (d) as the red curve. This test function represents the type of problems with
324 heavy tails. It is well known that MCMC schemes with Gaussian-shaped proposals have
325 difficulty in sampling the heavy-tailed distributions because the Gaussian probability density
326 function decays much faster than the heavy-tailed functions. This can cause the AM method to
327 fail to converge due to inefficient sampling. As shown in Figure 2 where we took the parameter
328 samples of one dimension as an example, Figure 2 (a) depicts the trace plot of x_1 from the AM
329 chain for the second half of total one million iterations. The figure indicates that in a long period
330 of iterations the chain of AM has no updates and is stuck in certain areas of the parameter space
331 that have negligible probabilities in the target distribution, resulting in a histogram dramatically
332 different from the true distribution in Figure 2 (b). In contrast, the DREAM sampler launched ten
333 chains and each chain evolved 100,000 iterations, so that the total function evaluations were the
334 same as the AM. The trace plot of the ten chains in Figure 2 (c) demonstrates that DREAM

335 exhibits a very good mixing of the individual paths, therefore its sampled histogram displays a
336 near-perfect match with the true distribution in Figure 2 (d). This case study suggests that
337 DREAM is able to sample these heavy-tailed distributions more efficiently than MCMC
338 samplers with a Gaussian proposal such as the AM.

339 **3.3 Case study III: a 4-dimensional trimodal distribution function**

340 The third case study is a 4-dimensional trimodal distribution with three well-separated
341 modes at -8, 0, and 8, respectively. The modes have increasing weights in density; from left to
342 right the weights are 0.1, 0.3, and 0.6, respectively. The marginal probability density in one
343 dimension of this distribution is shown in Figure 3 (a)-(d) as the red curve. This type of
344 distribution is known for its difficulty to be approximated by the MCMC methods, because the
345 three modes are so far isolated that the chains need to jump between modes and it is common for
346 chains to get stuck in one mode with a few or even no visits to other modes for many iterations,
347 which greatly increases the number of simulations needed for convergence.

348 We implemented both the AM and DREAM algorithms using a million function
349 evaluations. The AM used one chain with one million iterations long; we run the AM ten times
350 and at each time the chain initialized with diverse starting points. The DREAM used four parallel
351 chains with each chain evolving 250,000 iterations. Figure 3 (a)-(c) present the histograms of the
352 sampled x_1 from three independent runs of AM. As shown, AM exhibits a rather poor
353 performance as each different trial converged to a different mode and none of the ten runs can
354 capture all the three modes, resulting in an unreliable approximation of the target distribution. A
355 single chain is typically incapable of dealing with this multimodal parameter space and providing
356 an accurate characterization within a limited number of iterations. With multiple interacting
357 chains running simultaneously, the simulation results can be significantly improved. As

358 demonstrated in Figure 3 (d), the histogram of the marginal distribution from DREAM agrees
359 with the true mixture distribution very well. The density of the samples in each mode is
360 consistent with the weight of each peak in the distribution. Attributed to the differential evolution
361 technique defined in Eq. (4), DREAM allows for jumps between the different disconnected
362 modes. As illustrated in Figure 3 (e), each different chain jumps back and forth between the three
363 isolated modes with more visits in the mode having higher weight, resulting in a good mix of the
364 individual paths and consequently a relatively fast convergence to the true distribution.

365 **4 Application to a terrestrial ecosystem model**

366 In this section, we apply the DREAM algorithm to the data assimilation linked ecosystem
367 carbon (DALEC) model to estimate the posterior distributions of its parameters. In comparison,
368 the AM algorithm is also applied. DALEC is a relatively simple carbon pool and flux model
369 designed specifically to enable parameter estimation in terrestrial ecosystems. We used DALEC
370 to evaluate the performance of AM and DREAM in model calibration; we compared their
371 accurate simulations of the parameter PPDFs, model's goodness-of-fit, and predictive
372 performance of the calibrated models. Previous studies based on MCMC methods that use
373 Gaussian proposals have not reported multimodality in the marginal PPDFs of the model
374 parameters, so it is important to know whether the parameters have multimodality; if the
375 multimodality exists, we assess whether or not DREAM can identify the multiple modes and
376 improve the calibration results and thus the predictive performance.

377 **4.1 Description of the model and parameters for optimization**

378 The DALEC v1 model is used here (Williams et al., 2005; Fox et al., 2009) with some
379 structural modifications (Safta et al., 2015). DALEC consists of six process-based submodels
380 that simulate carbon fluxes between five major carbon pools: three vegetation carbon pools for

381 leaf, stem, and root; and two soil carbon pools for soil organic matter and litter. The fluxes
382 calculated on any given day impact carbon pools and processes in subsequent days.

383 The six submodels in DALEC are photosynthesis, phenology, autotrophic respiration,
384 allocation, litterfall and decomposition. Photosynthesis is driven by the aggregate canopy model
385 (ACM) (Williams et al., 2005), which itself is calibrated against the soil-plant-atmosphere model
386 (Williams et al., 1996). DALEC v1 was modified to incorporate the phenology submodel used in
387 Ricciuto et al. (2011), driven by six parameters. This phenology submodel controls the current
388 leaf area index (LAI) proportion of the seasonal maximum LAI ($laimax$). Spring LAI growth is
389 driven by a linear relationship to growing degree days (gdd), while senescence and LAI loss are
390 driven by mean air temperature. To simplify our model structure, senescence and LAI loss are
391 considered to occur simultaneously. In reality, leaves may still be present on the trees but
392 photosynthetically inactive due to the loss of chlorophyll. Here, this inactive LAI is considered
393 to have fallen and is added to the litter pool. To further reduce model complexity, the plant
394 labile pool in DALEC v1 was removed and a small portion of stem carbon is instead removed to
395 support springtime leaf growth each year. The six phenology parameters are a threshold for leaf
396 out (gdd_min), a threshold for maximum leaf area index (gdd_max), the temperature for leaf fall
397 ($tsmin$), seasonal maximum leaf area index ($laimax$), the rate of leaf fall ($leaffall$), and leaf mass
398 per unit area (lma), respectively. Given the importance of maintenance respiration in other
399 sensitivity analyses (Sargsyan et al., 2014), we expanded the autotrophic respiration submodel to
400 explicitly represent growth respiration (as a fraction of carbon allocated to growth) and
401 maintenance respiration with the base rate and temperature sensitivity parameters.

402 So for the first three plant submodels, deciduous phenology has six parameters; ACM
403 shares one parameter, lma , with the deciduous phenology and employs two additional

404 parameters, leaf C:N ratio (which is fixed at a constant of 25 in the simulation) and
405 photosynthetic nitrogen use efficiency (*nue*); the autotrophic respiration model computes the
406 growth and maintenance respiration components and is controlled by three parameters, the
407 growth respiration fraction (*rg_frac*), the base rate at 25°C (*br_mr*), and temperature sensitivity
408 for maintenance respiration (*q10_mr*).

409 The allocation model partitions carbon to several vegetation carbon pools. Leaf allocation
410 is first determined by the phenology model, and the remaining available carbon is allocated to
411 the root and stem pools depending on the fractional stem allocation parameter (*astem*). The litter
412 fall model redistributes the carbon content from vegetation pools to litter pools and is based on
413 the turnover times for stem (*tstem*) and root (*troot*). The last submodel is a decomposition model
414 that simulates heterotrophic respiration and the decomposition of litter into soil organic matter
415 (SOM). This model is driven by the temperature sensitivity of heterotrophic respiration (*q10_hr*),
416 the base turnover times for litter (*br_lit*) and SOM (*br_som*) at 25°C, and by the decomposition
417 rate (*dr*) from litter to SOM.

418 Model parameters are summarized in Table 1. These parameters were grouped according
419 to the six submodels that employ them, except for *lma* that impacts both the deciduous leaf
420 phenology and ACM. The nominal values and numerical ranges for these parameters were
421 designed to reflect average values and broad uncertainties associated with the temperate
422 deciduous forest plant functional type that includes Harvard Forest (Fox et al., 2009; White et al.,
423 2000; Ricciuto et al., 2011). Observed air temperature, solar radiation, vapor pressure deficit, and
424 CO₂ concentration were used as boundary conditions for the model.

425 In order to reduce computational time, we employed transient assumptions for running
426 DALEC. That is, for any given set of parameter values, DALEC was run one cycle only for 15

427 years between 1992-2006 where observation data are available. Under this assumption, four
428 additional parameters were used to describe the initial states of two vegetation carbon pools
429 (*stemc_init* and *rootc_init*) and the two soil carbon pools (*litr_init* and *somc_init*), as also
430 summarized in Table 1. Thus, a total of 21 parameters were considered and estimated in this
431 study.

432 **4.2 Calibration data**

433 The calibration data consist of the Harvard Forest daily net ecosystem exchange (NEE)
434 values, which were processed for the NACP site synthesis study (Barr et al., 2013) based on flux
435 data measured at the site (Urbanski et al., 2007). The daily observations cover a period of 15
436 years starting with the year 1992 and part of the data in the year 2005 is missing. Hill et al.
437 (2012) estimated that daily NEE values followed a normal distribution, with standard deviations
438 estimated by bootstrapping half-hourly NEE data (Papale et al., 2006; Barr et al., 2009). These
439 standard deviations have values between 0.2 and 2.5, with the mean value about 0.7. Total 14
440 years NEE data (years from 1992 to 2004 and year 2006) were considered here for model
441 calibration and their corresponding standard deviations were used to construct the diagonal
442 covariance matrix of the Gaussian likelihood function by assuming the data are uncorrelated.

443 **4.3 Numerical experiments and calibration results**

444 Both AM and DREAM were implemented to estimate the 21 parameters of the DALEC
445 model using the PPDFs. To avoid the influence of prior distributions on the investigation of the
446 posteriors estimated by the two algorithms, uniform priors were used for all parameters with the
447 ranges specified in Table 1. DREAM launched ten parallel chains starting at values randomly
448 drawn from the parameter prior distributions; and each chain evolved 300,000 iterations. Chain
449 convergence was assessed via the Gelman Rubin \hat{R} statistic. Figure 4 (b) plots the \hat{R} values of

450 the 21 parameters for the last 100,000 iterations. The figure suggests that the last 50,000 samples
451 of each chain (i.e., total 500,000 samples from ten chains) can be used for the PPDF
452 approximation as the \hat{R} has values below the threshold of 1.2.

453 AM used one chain and the chain has the same initialization with DREAM. In addition,
454 AM also requires the initialization of the covariance matrix of its Gaussian proposal. To facilitate
455 the convergence of AM, we constructed the initial covariance C_0 based on the first 200,000
456 samples from the DREAM simulation. We conducted ten independent AM runs, so the same \hat{R}
457 statistic can be used for convergence diagnosis. As AM is a single-chain algorithm, to make a
458 fair comparison with the multi-chain algorithm of DREAM, each AM chain simulated 3,000,000
459 samples, so that the number of function evaluations in one AM chain is the same with that of
460 DREAM using ten chains. The \hat{R} values of all parameters based on the ten AM runs for the last
461 1,000,000 iterations are shown in Figure 4 (a). The figure indicates that AM has converged and
462 the last 500,000 samples from one chain were used for the PPDF approximation.

463 The estimated PPDFs from AM and DREAM are presented in Figure 5, and the optimal
464 parameter estimates, as represented by the maximum a posteriori (MAP), are summarized in
465 Table 1. Both AM and DREAM results show that all the 21 parameters can be well constrained
466 by the calibration data, although some studies reported that eddy-covariance observations along
467 could not identify all the model parameters with their posterior distributions significantly smaller
468 than their priors (Wang et al., 2007, Keenan et al., 2012, 2013). Whether a parameter is
469 identifiable depends on the model, model parameters, and the calibration data. When the
470 parameter related processes are necessary to simulate the model outputs whose corresponding
471 observation data are sensitive to the parameters, the parameters can usually be identified and
472 sometimes well constrained. For example, Keenan et al. (2013) showed that in their FöBAAR

473 model with 40 parameters, many parameters couldn't be constrained even with the consideration
474 of several data streams together. They found that these unidentifiable parameters might be
475 redundant in the model structure representation. Roughly speaking, for a simple model with a
476 few number of parameters, the parameters can be more identifiable than the complex models
477 with a large parameter size (Richardson et al., 2010, Weng and Luo, 2011). The DALAC model
478 used in this study is a simple model with considering only six processes and five carbon pools,
479 and all the 21 parameters were shown to be sensitive to the NEE data, despite that some are more
480 sensitive than others (Safta et al, 2015). So it is not surprising that both AM and DREAM
481 algorithms can constrain the parameters pretty well.

482 In comparison of the results between AM and DREAM, Figure 5 indicates that they
483 produced very similar PPDFs for many parameters, such as *gdd_max*, *astem*, *br_som*, *rootc_init*,
484 and *litc_init*. However, for parameters *tsmin* and *leaffall*, the estimated PPDFs of the two
485 algorithms are substantially different. This also can be seen in Table 1, where the differences of
486 MAP values for most parameters are relatively small between the two algorithms, but for *tsmin*
487 and *leaffall*, the relative difference was 38% and 94%, respectively. The parameter *tsmin*
488 represents the temperature triggering leaf fall and the *leaffall* represents the rate of leaf fall on
489 days when the temperature is below *tsmin*. We further analyzed the simulations of these two
490 parameters from AM and DREAM in Figure 6. Figure 6 (a) and (b) illustrate two separated
491 modes in the estimated marginal PPDFs of *tsmin* and *leaffall* obtained from DREAM, while AM
492 only identifies one mode for both parameters and they dramatically differ from any modes
493 simulated by DREAM. For example, the single mode of *tsmin* identified by AM gives a lower
494 temperature threshold (meaning a later initiation of senescence) that is compensated by a higher
495 estimate of *leaffall* rate compared to DREAM. As shown in the trace plots of Figure 6 (c) and

496 (d), all ten independent runs of AM converged to a single mode, with values of $tsmin$ between
497 4.8 to 5.0 and values of $leaffall$ between 0.06 and 0.075. In contrast, each of the ten parallel
498 chains of DREAM, as exhibited in Figure 6 (e) and (f), jumps back and forth between two
499 modes. And the two parameters compensate each other by jumping in opposite directions, where
500 $tsmin$ is more likely to be near the mode with a smaller value of 7.9 than that of 8.35 and $leaffall$
501 is more likely to be near the mode of a larger value of 0.035 than that of 0.031.

502 In addition, the simulated joint PPDFs of the two parameters, $tsmin$ and $leaffall$, are
503 different between AM and DREAM. As illustrated in Figure 7, AM results exhibit a negligible
504 correlation between the two parameters with the correlation coefficient of -0.042, while DREAM
505 results show that the two parameters are strongly negatively correlated with the correlation
506 coefficient of -0.95. As demonstrated in Figure 7 (b), the samples of $tsmin$ and $leaffall$ from
507 DREAM fall almost perfectly on the line with slope of -1, where the mode with smaller $tsmin$
508 values corresponds to the mode of larger $leaffall$ and the similar correspondence can be found for
509 the other pair of modes.

510 The existence of two modes for $tsmin$ and $leaffall$ and the negative correlation between the
511 two parameters are not unreasonable as we used multiple years of observations for parameter
512 estimation. It is possible that in some years the senescence was triggered later (i.e., a smaller
513 $tsmin$) but proceeded at a faster rate (i.e., a larger $leaffall$), while in some other years the
514 senescence was triggered earlier (i.e., a larger $tsmin$) but proceeded at a slower rate (i.e., a smaller
515 $leaffall$). Given our model simplification of concurrent senescence and leaf fall and our use of
516 NEE rather than LAI observations as a constraining variable, we note that these optimized
517 parameters are more likely to reflect the process of chlorophyll loss than actual leaf loss. Cool
518 temperatures are a key driver of senescence at this site (Richardson et al., 2006).

519 Figure 8 (a) highlights the years in red where the model based on the right mode of *tsmin*
520 and the left mode of senescence rate (*leaffall*) has a better fit to the observed NEE, i.e., years
521 1994, 1995, 1998, 1999, and 2006. The remaining years are highlighted in blue where the left
522 mode of *tsmin* and the right mode of *leaffall* result in a better model fit. Taking years 1992 and
523 1994 as an example, we examined the leaf area index (LAI) in the period of senescence. Figure 8
524 (b) shows that at the first few days of September in both years, the values of LAI were the same
525 around 2.0; after that the timing of senescence during the two years differs dramatically. In year
526 1994, the value of LAI started decreasing on September 7th, and then decreased slowly over
527 several distinct cool periods during the rest of September and early October until it hit zero in
528 November 7th; the process took about 61 days. In contrast, in year 1992, the value of LAI
529 remained near the maximum value during all of September, then dropped rapidly in October and
530 hit zero also on November 7th; this process took about 40 days. The changes in the LAI between
531 the two years reflect the variability in the time of year when the leaves start to drop and the rate
532 of leaf drop. Although the leaf fall in 1992 was triggered later than in 1994, the leaves in 1992
533 dropped at a faster rate, resulting in LAI approaching zero at the same time of the year.

534 Figure 8 (c) depicts the recorded lowest temperature of the days between September 1st and
535 November 20th for years 1992 and 1994, where the red line highlights the period between the
536 first leaf and the last leaf drops in 1994. The blue line highlights the corresponding period of
537 leaf fall in 1992. Since the senescence was triggered in the early September of 1994, the
538 temperature of triggering leaf fall was relatively high, about 8.1°C (associated with the higher
539 mode of *tsmin*) as shown in Figure 8 (c). In the rest days of September in 1994 following the
540 senescence trigger, temperatures remained warm. The slower leaf fall rate associated with
541 periodic warm conditions (temperatures above *tsmin*) and the lower mode of *leaffall* caused a

542 slow leaf fall in September of 1994 as shown in Figure 8 (b). In comparison, in 1992, senescence
543 was triggered at the end of September with a low temperature of 2.6°C. Then in October with
544 colder temperatures, the leaves drop at a rapid rate associated with the consistent cold
545 temperatures and higher mode of *leaffall*. Especially in late October, the temperatures are
546 consistently below *tsmin*, causing a fast rate of leaf fall, as shown in Figure 8 (b) where the
547 decreasing rate of the LAI in the late October of 1992 is very large. This indicates that a higher
548 temperature trigger is usually associated with a lower leaf fall rate and vice versa.

549 The bimodality identified in the DREAM simulation and examined in the scenarios above
550 reflects the inability of the model structure to predict the observations consistently with a single
551 set of parameters. This bimodality examined in DREAM may be caused in part by an incomplete
552 representation of the senescence process. Using a temperature threshold (parameter *tsmin*) and a
553 constant rate of leaf fall (parameter *leaffall*) to predict senescence is almost certainly an
554 oversimplification. In reality, the process of senescence is also affected by day length. Longer
555 days and warmer temperatures cause a relatively slow rate of leaf fall, whereas shorter days and
556 cooler temperatures accelerate the rate that the leaves fall (Leigh et al., 2002; Saxena, 2010). The
557 higher mode of *tsmin* means that senescence is initiated earlier, when day lengths are still
558 relatively long. This may partially explain why this mode is associated with a lower mode of the
559 *leaffall* parameter. Other factors not represented in DALEC are also likely to play a role such as
560 soil moisture, or a more complex relationship with spring phenology (Keenan et al., 2015).

561 The difference in estimated parameters between AM and DREAM causes different
562 simulations of NEE, especially during the autumn. As an example, Figure 9 illustrates the
563 comparison of the simulated NEE to observations for a month in Autumn of the year 1995 based
564 on MAP estimates obtained under AM and DREAM. Visual inspection indicates that the

565 simulated NEE from the DREAM-calibrated parameters provides a better fit to the observations,
566 as also indicated by the smaller root mean squared errors (RMSE). In addition, the maximum log
567 likelihoods listed in Table 1 suggest that overall the DREAM-estimated parameters produce a
568 better model fit to the observations, comparing -6578.3 with the smaller AM value of -6662.6.

569 **4.4 Assessment of predictive performance**

570 To further compare the calibration results between AM and DREAM, we explore their
571 predictive skill based on the sampled PPDFs of model parameters. We employed the Bayesian
572 posterior predictive distribution (Lynch and Western, 2004) to assess the adequacy of the
573 calibrated models. Specifically, the posterior distribution for the predicted NEE data, $p(\mathbf{y}|\mathbf{D})$, is
574 represented by marginalization of the likelihood over the posterior distribution of model
575 parameters \mathbf{x} as

576
$$p(\mathbf{y}|\mathbf{D}) = \int p(\mathbf{y}|\mathbf{x})p(\mathbf{x}|\mathbf{D})d\mathbf{x}. \quad (5)$$

577 In approximation of $p(\mathbf{y}|\mathbf{D})$, we used the converged MCMC samples from $p(\mathbf{x}|\mathbf{D})$. The last 500
578 samples of each chain (total $500 \times 10 = 5000$ samples) were considered; for each parameter sample
579 we drew 20 samples of the 14 years NEE data from their normal distributions, where the mean
580 values are the model simulations. Then the total 100,000 prediction samples were used to
581 approximate the posterior predictive density $p(\mathbf{y}|\mathbf{D})$.

582 From the estimated $p(\mathbf{y}|\mathbf{D})$, we extracted the 95% confidence intervals for daily NEE
583 values in the year 1995 and presented the results in Figure 10. The top panel corresponds to the
584 results of AM and the bottom panel to DREAM. Overall, the predictive intervals from both
585 algorithms cover well the observed NEE for the entire time range with occasional spikes outside
586 the intervals. Closer visual inspection indicates that DREAM produces better predictive
587 performance than AM. As seen during the period in October, the predictive interval of DREAM

588 can enclose most of the observed NEE while AM actually has under-prediction, causing the
589 observations outside the intervals.

590 In order to quantitatively compare the predictive performance of the calibrated models
591 based on AM and DREAM, we defined two metrics, a probabilistic score called CRPS and
592 predictive coverage. The CRPS (Gneiting and Raftery, 2007) measures the difference between
593 the cumulative distribution function (CDF) of the observed data and that of the predicted data.

594 The lower the value of the CRPS is, the better the predictive performance. The predictive
595 coverage measures the percent of observations that fall within a given predictive interval. A
596 larger value of the predictive coverage suggests better predictive performance. Figure 10 shows
597 that AM gives a CRPS value of 0.48 while the value of DREAM is 0.43. The lower value of
598 DREAM indicates that, on average, DREAM produces tighter marginal predictive CDF that are
599 better centered around the NEE data, suggesting its superior predictive performance to AM in
600 terms of both accuracy and precision. In addition, the predictive coverage of DREAM is larger
601 than that of AM, attesting once again to its superior performance in prediction.

602 **4.5 Investigation of reliability of the algorithms**

603 Bayesian calibration of TEMs is challenging due to high model nonlinearity, high
604 computational cost, a large number of model parameters, large observation uncertainty, and the
605 existence of local optima. So, a robust and efficient MCMC algorithm is desired to give reliable
606 probabilistic descriptions of the TEM parameters.

607 In this section, we investigate the influence of the proposal initialization on the
608 computational efficiency and reliability of AM. In above analysis, the initial covariance matrix
609 C_0 of AM was constructed based on DREAM samples *before* convergence. This setting
610 facilitated the convergence of AM but resulted in AM false convergence to inaccurate PPDFs,

611 leading to a relatively poor calibration and prediction performance. We implemented another
612 AM simulation here for further examination. In this new simulation, we constructed two
613 independent AM chains; both chains initialized C_0 using the DREAM samples *after*
614 convergence, but one chain only used *tsmin* samples around its left mode and *leaffall* samples
615 around its right mode, and the other chain used *tsmin* samples around its right mode and *leaffall*
616 samples around its left mode. Each chain evolved 3,000,000 iterations, and for the last 1,000,000
617 iterations the convergence diagnostic \hat{R} values were calculated and shown in Figure 11 (a). The
618 figure indicates that most parameters have \hat{R} less than the threshold of 1.2 except parameters
619 *tsmin* and *leaffall* whose values are far above 1.2 and no signs show that they are going
620 significantly smaller in the following one million iterations. This suggests that the two chains
621 converged to different optima for these two parameters. We then estimated PPDFs using the last
622 500,000 samples from each chain respectively. The results for *tsmin* and *leaffall* are shown in
623 Figure 11 (b)-(e). The figures illustrate that the samples from one AM chain can only identify
624 one mode, and this mode is consistent with the samples used to construct the initial covariance
625 matrix C_0 .

626 As a single-chain sampler, it is conceptually possible for AM to become trapped in a single
627 mode (Jeremiah et al., 2009). Consider a distribution with two far-separated modes and assume
628 that the chain is initialized near one of the two modes (both samples initialization and proposal
629 covariance initialization). At the beginning of the sampling, AM will explore the area around the
630 mode where it is initialized and start identifying the first mode. Since the candidate samples
631 generated by the Gaussian proposal have higher Metropolis ratios (Eq. (2)) in the nearby area
632 than in the far-away regions of the identified mode, the chain is hardly to move to the other
633 mode. When the Gaussian proposal covariance matrix C_t begins to update, the chance of the

634 chain jumping to the other mode depends on the relative scale of the proposal covariance and the
635 distance between the two modes. When the modes separation exceeds the range of the proposal,
636 AM is less likely to escape the identified local mode.

637 Although the two AM chains can only simulate one of the two modes for $tsmin$ and
638 *leaffall*, the estimated PPDFs for the other 19 parameters from the two chains are close to each
639 other and both similar to the DREAM results. This finding once again shows the reasonable
640 existence of the two separated modes and their equivalent importance. With an improved
641 initialization of C_0 in the new simulation, the performance of AM also improved as it can
642 accurately simulate uni-modal PPDFs and capture one mode for the multi-modal PPDFs. This
643 investigation suggests that for AM an appropriate initialization of its Gaussian proposal has a
644 significant impact on its performance. We made several test runs of AM and only when we
645 initialized C_0 using the complete set of converged DREAM samples, was the AM able to
646 produce PPDFs similar to the ones resulted from DREAM with identifying all the possible
647 optima. However, the information of a reasonable C_0 in practice is either unavailable or very
648 computationally expensive to obtain.

649 **5 Conclusions**

650 In this study we compare the performance of two MCMC algorithms, namely AM and
651 DREAM, for sampling high-dimensional multi-modal posterior distributions for models that
652 exhibit non-linear behavior. We present results obtained in canonical, manufactured
653 configurations, as well as the terrestrial ecosystem model DALEC. The AM algorithm is
654 sensitive to initial conditions when sampling multi-modal posteriors. By comparison, DREAM's
655 performance does not depend on initialization of the algorithm. Thus, DREAM is particularly
656 suitable to calibrate complex terrestrial ecosystem models, where the existence of local optima is

657 always a concern and where often little information about the parameters is known in order to
658 optimize the algorithm implementation. In this study, the application in an ecosystem carbon
659 model indicates that, compared to the AM, the DREAM can accurately simulate the posterior
660 distributions of the model parameters, resulting in a better model fit, superior predictive
661 performance, and perhaps identifying structural errors or process differences between the model
662 and ecosystem from which observations were used for calibration.

663 **Acknowledgement**

664 This research was conducted by the Terrestrial Ecosystem Science – Science Focus Area
665 (TES-SFA) project, supported by the Office of Biological and Environmental Research in the
666 DOE Office of Science. The Harvard Forest flux tower is part of the AmeriFlux network
667 supported by Office of Biological and Environmental Research in the DOE Office of Science
668 and is additionally supported by National Science Foundation as part of the Harvard Forest
669 Long-Term Ecological Research site. The NACP site-synthesis activity supported assembling the
670 data set. Oak Ridge National Laboratory is managed by UT-BATTELLE for DOE under contract
671 DE-AC05-00OR22725. Sandia National Laboratories is a multi-program laboratory managed
672 and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin
673 Corporation, for the DOE's National Nuclear Security Administration under contract DE-AC04-
674 94-AL85000.

675 **References**

676 Barr, A., Hollinger, D., and Richardson, A. D.: CO₂ flux measurement uncertainty estimates for
677 NACP, AGU Fall Meeting, December 2009, abstract number B54A-04B, 2009.
678 Barr, A. et al.: NACP site: tower meteorology, flux observations with uncertainty, and ancillary
679 data, available at: <http://daac.ornl.gov> from Oak Ridge National Laboratory Distributed

680 Active Archive Center, doi:10.3334/ORNLDAA/1178, 2013.

681 Box, E.P., and Tiao, G.C.: Bayesian inference in statistical analysis, Wiley, New York, 588pp,

682 1992.

683 Dowd, M.: Bayesian statistical data assimilation for ecosystem models using Markov Chain

684 Monte Carlo, *Journal of Marine Systems*, 68, 439-456, 2007.

685 Fox, A., et al.: The REFLEX project: Comparing different algorithms and implementations for

686 the inversion of a terrestrial ecosystem model against eddy covariance data, *Agric. For.*

687 *Meteorol.*, 149(10), 1597-1615, 2009.

688 Gelman, A., and Rubin, D.B.: Inference from iterative simulation using multiple sequences,

689 *Statistical science* 7(4), 457-472 1992.

690 Gelman, A., Carlin, J.B., Stern, H.S., and Rubin, D.B.: Bayesian data analysis, Chapman and

691 Hall, London, 696pp, 1995.

692 Gelman, A., and Shirley, K.: Inference from simulations and monitoring convergence, *Handbook*

693 *of Markov Chain Monte Carlo*, CRC Press; Boca Raton, FL: 2011.

694 Gneiting, T., and Raftery, A.E.: Strictly proper scoring rules, prediction, and estimation, *J. Am.*

695 *Statist. Assoc.*, 102, 359-378, 2007.

696 Haario, H., Saksman, E., and Tamminen, J.: Adaptive proposal distribution for random walk

697 Metropolis algorithm. *Comput. Statist.*, 14, 375-395, 1999.

698 Haario, H., Saksman, E., and Tamminen, J.: An adaptive Metropolis algorithm, *Bernoulli*, 7(2),

699 223-242, 2001.

700 Haario, H., Laine, M., Mira, A, and Saksman, E.: DRAM: Efficient adaptive MCMC, *Stat Comp*

701 16, 339-354, 2006.

702 Hararuk, O., Xia, J., and Luo, Y.: Evaluation and improvement of a global land model against

703 soil carbon data using a Bayesian Markov chain Monte Carlo method, *J. Geophys. Res.*
704 *Biogeosci.*, 119, 403-417, 2014.

705 Hill, T. C., Ryan, E., and Williams, M.: The use of CO₂ flux time series for parameter and
706 carbon stock estimation in carbon cycle research, *Global Change Biol.*, 18, 179–193,
707 2012.

708 Järvinen, H., Raisanen, P., Laine, M., Tamminen, J., Ilim, A., Oja, E., Solonen, A., and Haario,
709 H.: Estimation of ECHAM5 climate model closure parameters with adaptive MCMC,
710 *Atmos. Chem. Phys.*, 10, 9993-10002, 2010.

711 Jeremiah, E., Sisson, S., Marshall, L., Mehrotra, R., and Sharma, A.: Bayesian calibration and
712 uncertainty analysis of hydrological models: A comparison of adaptive Metropolis and
713 sequential Monte Carlo samplers, *Water Resour. Res.*, 47, W07547,
714 doi:10.1029/2010WR010217, 2011.

715 Keenan R.J., Reams, G.A., Achard, F., de Freitas, J.V., Grainger A., and Lindquist E.: Dynamics
716 of global forest area: Results from the FAO global forest resources assessment 2015,
717 *Forest Ecology and Management*, 352, 9-20, 2015.

718 Keenan, T. F., Davidson, E., Moffat, A., Munger, W., and Richardson, A.D.: Using model-data
719 fusion to interpret past trends, and quantify uncertainties in future projections, of
720 terrestrial ecosystem carbon cycling, *Global Change Biology*, 18, 2555-2569, 2012.

721 Keenan, T. F., Davidson, E., A., Munger, W., and Richardson, A.D.: Rate my data: quantifying
722 the value of ecological data for the development of models of the terrestrial carbon
723 cycle, *Ecological Applications*, 23(1), 273-286, 2013.

724 Kinlan, B. P., and Gaines, S. D.: Propagule dispersal in marine and terrestrial environments: A
725 community perspective, *Ecology*, 84(8), 2007-2020, 2003.

726 Knorr, W., and Heimann M.: Uncertainties in global terrestrial biosphere modeling: 1. A
727 comprehensive sensitivity analysis with a new photosynthesis and energy balance
728 scheme, *Global Biogeochem. Cycles*, 15, 207-225, 2001.

729 Leigh, M., Nihevia, N., Covich, E., and Kehn, D.: How temperature and daylength effect
730 seasonal leaf change in honeysuckle plants, online article,
731 <http://jrscience.wcp.muohio.edu/nsfall01/labpacketArticles/Howtemperatureanddaylength.html>, 2002.

733 Lu, D., Ye, M., and Hill, M.C.: Analysis of regression confidence intervals and Bayesian
734 credible intervals for uncertainty quantification, *Water Resour. Res.* 48, W09521.
735 <http://dx.doi.org/10.1029/2011WR011289>, 2012.

736 Lu, D., Ye, M., Hill, M.C., Poeter, E.P., and Curtis, G.P.: A computer program for uncertainty
737 analysis integrating regression and Bayesian methods, *Environmental Modelling &*
738 *Software*, 60, 45-56, 2014.

739 Lynch, S.M, and Western, B.: Bayesian posterior predictive checks for complex models, *Sociol.*
740 *Meth. Res.*, 32, 301-335, 2004.

741 Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H., and Teller, E.: Equations of
742 state calculations by fast computing machines, *J. Chem. Phys.* 21, 1087-1091, 1953.

743 O'Sullivan, F.: A statistical perspective on ill-posed inverse problems, *Statistical Science*, 1(4),
744 502-518, 1986.

745 Papale, D., Reichstein, M., Aubinet, M., Canfora, E., Bernhofer, C., Kutsch, W., Longdoz, B.,
746 Rambal, S., Valentini, R., Vesala, T., and Yakir, D.: Towards a standardized processing
747 of Net Ecosys- tem Exchange measured with eddy covariance technique: algorithms and
748 uncertainty estimation, *Biogeosciences*, 3, 571-583, 2006.

749 Price, K.V., Storn, R.M., and Lampinen, J.A.: Differential Evolution, a practical approach to
750 global optimization, Springer, Berlin, 2005.

751 Rayner, P. J., Scholze, M., Knorr, W., Kaminski, T., Giering, R. and Widmann, H.: Two decades
752 of terrestrial carbon fluxes from a carbon cycle data assimilation system (CCDAS),
753 Global Biogeochem. Cycles, 19, GB2026, doi:10.1029/2004GB002254, 2005.

754 Ricciuto, D. M., Davis, K. J., and Keller, K.: A Bayesian calibration of a simple carbon cycle
755 model: The role of observations in estimating and reducing uncertainty, Global
756 Biogeochem. Cycles, 22, GB2030, doi:10.1029/2006GB002908, 2008.

757 Ricciuto, D. M., King, A. W., Dragoni, D., and Post, W. M.: Parameter and prediction
758 uncertainty in an optimized terrestrial carbon cycle model: Effects of constraining
759 variables and data record length, J. Geophys. Res., 116, G01033,
760 doi:10.1029/2010JG001400, 2011.

761 Richardson, A., Bailey, A.S., Denny, E.G., Martin, C.W., and O'Keefe, J.: Phenology of a
762 northern hardwood forest canopy, Global Change Biology, 12, 1174-1188, doi:
763 10.1111/j.1365-2486.2006.01164.x, 2006.

764 Richardson, A.D., Williams, M., Hollinger, D.Y., Moore, D.J.P., Dail, D.B., Davidson, E.A.,
765 Scott, N.A., Evans, R.S., Hughes, H., Lee, J.T., Rodrigues, C., and Savage, K.:
766 Estimating parameters of a forest ecosystem C model with measurements of stocks and
767 fluxes as joint constraints, Oecologia, 164, 25-40, 2010.

768 Robert, C., and Casella, G.: Monte Carlo statistical method, Springer. 2nd ed. 645pp, 2004.

769 Safta, C., Ricciuto, D. M., Sargsyan, K., Debusschere, B., Najm, H. N., Williams, M., and
770 Thornton, P. E.: Global sensitivity analysis, probabilistic calibration, and predictive
771 assessment for the data assimilation linked ecosystem carbon model, Geosci. Model Dev., 8,

772 1899-1918, 2015.

773 Sargsyan, K., Safta, C., Najm, H. N., Debusschere, B., Ricciuto, D. M., and Thornton, P. E.:

774 Dimensionality reduction for complex models via Bayesian compressive sensing, *Int. J.*

775 *Uncert. Quant.*, 4, 63-93, 2014.

776 Saxena, N.P.: *Objective Botany for all medical entrance examinations*, Krishna Prakashan Media

777 Ltd., 2010.

778 Stead, T. K., Schmid-Araya, J. M., Schmid, P. E., and Hildrew, A.G.: The distribution of body

779 size in a stream community: one system, many patterns, *Journal of Animal Ecology*, 74,

780 475–487, 2005.

781 ter Braak, C.J.F.: A Markov chain Monte Carlo version of the genetic algorithm differential

782 evolution: easy Bayesian computing for real parameter spaces, *Stat. Comput.* 16, 239-

783 249, 2006.

784 Talagrand, O., Courtier, P.: Variational assimilation of meteorological observations with the

785 adjoint vorticity equation – Part I. Theory. *Q. J. R. Meteorol. Soc.* 113, 1311-1328,

786 1987.

787 Thibault K. M., White, E. P., Hurlbert, A. H., and Morgan Ernest S. K.: Multimodality in the

788 individual size distributions of bird communities, *Global Ecology and Biogeography*,

789 20, 145-153, 2011.

790 Trudinger, C. M., et al.: OptIC project: An intercomparison of optimization techniques for

791 parameter estimation in terrestrial biogeochemical models, *J. Geophys. Res.*, 112,

792 G02027, doi:10.1029/2006JG000367, 2007.

793 Urbanski, S., Barford, C., Wofsy, S. C., Kucharik, C., Pyle, E., Budney, J., McKain, K.,

794 Fitzjarrald, D., Czikowsky, M., and Munger, J. W.: Factors controlling CO₂ exchange

795 on timescales from hourly to decadal at Harvard Forest, *J. Geophys. Res.*
796 *Biogeosciences*, 112, 1-25, 2007.

797 Wang, Y. P., Baldocchi, D., Leuning, R., Falge, E., and Vesala, T.: Estimating parameters in a
798 land-surface model by applying nonlinear inversion to eddy covariance flux
799 measurements from eight FLUXNET sites, *Global Change Biology*, 13(3), 652-670,
800 2007.

801 Weng, E., and Luo, Y.: Relative information contributions of model vs. data to short- and long-
802 term forecasts of forest carbon dynamics, *Ecological Applications*, 21, 1490-1505,
803 2011.

804 White, M. A., Thornton, P. E., Running, S. W., and Nemani, R. R.: Parameterization and
805 sensitivity analysis of the BIOME-BGC terrestrial ecosystem model: net primary
806 production controls, *Earth Interactions*, 4, 1-85, 2000.

807 Williams, M., et al.: Modelling the soil-plant-atmosphere continuum in a *Quercus'* *Acer* stand at
808 Harvard Forest: the regulation of stomatal conductance by light, nitrogen and soil/plant
809 hydraulic properties, *Plant, Cell Environ.*, 19, 911-927, 1996.

810 Williams, M., Schwarz, P. A., Law, B. E., Irvine, J., and Kurpius, M. R.: An improved analysis
811 of forest carbon dynamics using data assimilation, *Global Change Biol.*, 11, 89-105,
812 2005.

813 Vrugt, J.A., ter Braak, C.J.F., Clark, M.P., Hyman, J.M., Robinson, B.A.,; Treatment of input
814 uncertainty in hydrologic modeling: Doing hydrology backward with Markov chain
815 Monte Carlo simulation, *Water Resour. Res.*, 44, W00B09,
816 doi:10.1029/2007WR006720, 2008.

817 Vrugt, J.A., ter Braak, C.J.F., Diks, C.G.H., Robinson, B.A., Hyman, J.M., and Higdon, D.:

818 Accelerating Markov Chain Monte Carlo simulation by differential evolution with self-
819 adaptive randomized subspace sampling, International Journal of Nonlinear Sciences &
820 Numerical Simulation, 10(3), 271-288, 2009a.

821 Vrugt, J.A., ter Braak, C.J.F., Gupta, H.V., Robinson, B.A.: Equifinality of formal (DREAM)
822 and informal (GLUE) Bayesian approaches in hydrologic modeling, Stoch. Environ.
823 Res. Risk Assess., 23 (7), 1011-1026, 2009b.

824 Vrugt, J.A.: Markov chain Monte Carlo simulation using the DREAM software package: Theory,
825 concepts, and MATLAB implementation, Environmental modeling & Software, 75,
826 273-316, 2016.

827 Zhang, G., Lu, D., Ye, M., Gunzburger, M., and Webster, C.: An adaptive sparse-grid high-order
828 stochastic collocation method for Bayesian inference in groundwater reactive transport
829 modeling, Water Resour. Res., 49, <http://dx.doi.org/10.1002/wrcr.20467>, 2013.

830 Ziehn, T., Scholze, M., and Knorr, W.: On the capability of Monte Carlo and adjoint inversion
831 techniques to derive posterior parameter uncertainties in terrestrial ecosystem models,
832 Global Biogeochem. Cycles, 26, GB3025, doi:10.1029/2011GB004185, 2012.

833 Zobitz, J. M., Desai, A. R., Moore, D. J. P., and Chadwick, M. A.: A primer for data assimilation
834 with ecological models using Markov Chain Monte Carlo, Oecologia, 167, 599-611,
835 2011.

836

List of Tables

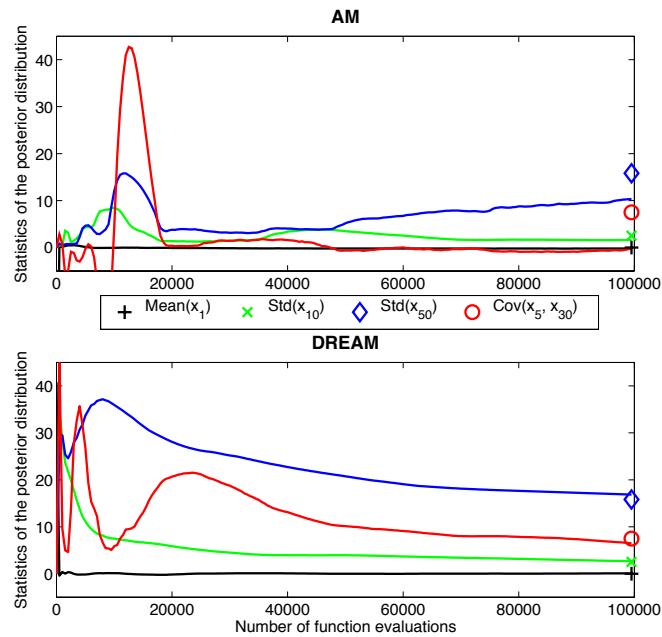
837 Table 1. Nominal values and ranges of the 21 parameters for optimization in the DALEC model,
 838 and the maximum a posteriori (MAP) estimates based on the AM and DREAM samplers.

	ParName	Nom. Val.	Range	MAP estimates	
				AM LL=-6662.6	DREAM LL=-6578.3
Decid. Phen.	gdd_min	100	10–250	37.90	39.53
	gdd_max	200	50–500	203.44	201.77
	tsmin	5	0–10	4.88	7.87
	laimax	4	2–7	2.01	2.00
	leaffall	0.1	0.03–0.95	0.067	0.035
	lma	80	20–150	136.81	147.45
A. R.	nue	7	1–20	8.90	8.21
	q10_mr	2	1–4	1.00	1.00
	br_mr	10^{-4}	10^{-5} – 10^{-2}	7.39×10^{-3}	6.35×10^{-3}
	rg_frac	0.2	0.05–0.5	0.06	0.066
	astem	0.7	0.1–0.95	0.75	0.74
	tstem	$1/(50 \times 365)$	$1/(250 \times 365)$ – $1/(10 \times 365)$	1.98×10^{-5}	1.63×10^{-5}
Decomp.	troot	$1/(5 \times 365)$	$1/(25 \times 365)$ – $1/365$	8.55×10^{-4}	7.88×10^{-4}
	q10_hr	2	1–4	2.98	2.68
	br_lit	$1/(2 \times 365)$	$1/(5 \times 365)$ – $10/(5 \times 365)$	4.97×10^{-3}	5.36×10^{-3}
	br_som	$1/(30 \times 365)$	$1/(100 \times 365)$ – $1/(10 \times 365)$	2.79×10^{-5}	2.88×10^{-5}
	dr	10^{-3}	10^{-4} – 10^{-2}	2.46×10^{-3}	3.39×10^{-3}
	stemic_init	5000	1000 – 15000	1070.9	1417.8
Init. C.	rootc_init	500	100 – 3000	100.56	100.61
	litec_init	600	50 – 1000	60.74	66.77
	somc_init	7000	1000 – 25000	2029.1	4708.2

839 Parameter units refer to Table 1 of Safta et al. (2015). The LL represents the log likelihood
 840 evaluated at the MAP parameter estimates; the larger the value is, the better the model fit.

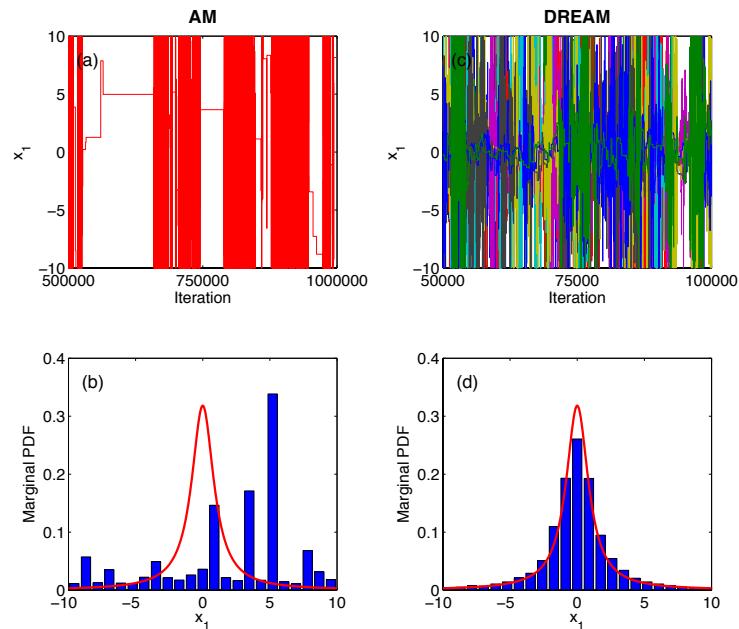
841

List of Figures



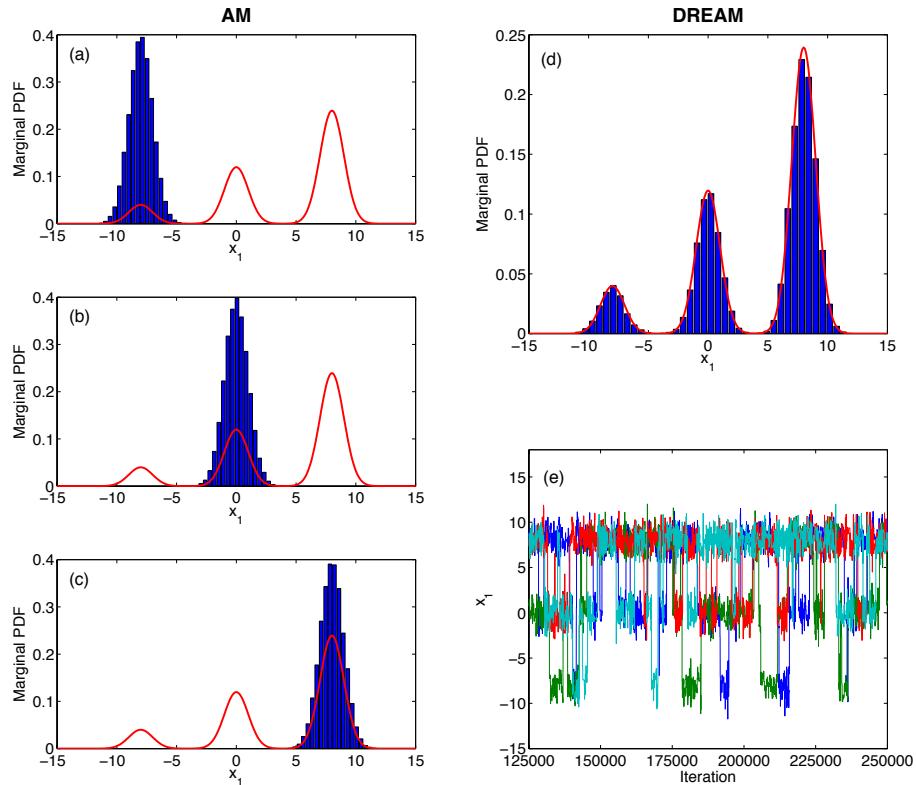
842

843 Figure 1. Simulated traces for the 50-dimensional Gaussian distribution based on the AM and
844 DREAM sampler. The black line denotes the evolution of the mean of sampled x_1 ; the green and
845 blue lines depict the evolution of the sampled standard deviation (Std) of x_{10} and x_{50} ,
846 respectively; and the red line denotes the evolution of the covariance between x_5 and x_{30} . The
847 true values of these four statistics are indicated with different symbols at the right hand side in
848 each plot.



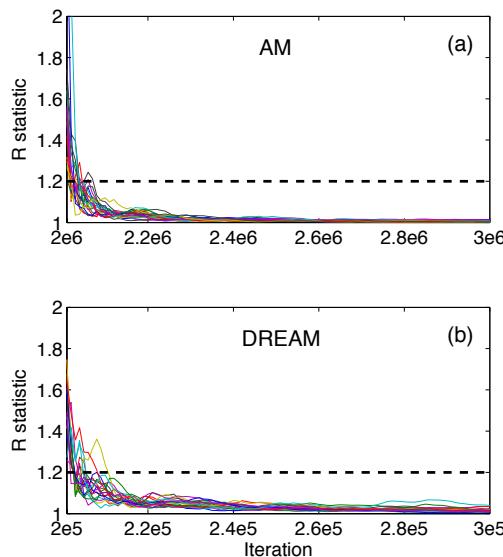
849

850 Figure 2. Results for the 10-dimensional Cauchy distribution from AM and DREAM. Evolution
851 of sampled x_1 values (a) in one chain of AM and (c) in ten interacting chains of DREAM, where
852 each chain is coded with a different color; and approximated (histogram) and actual (red curve)
853 marginal posterior distributions of x_1 from (b) AM and (d) DREAM.



854

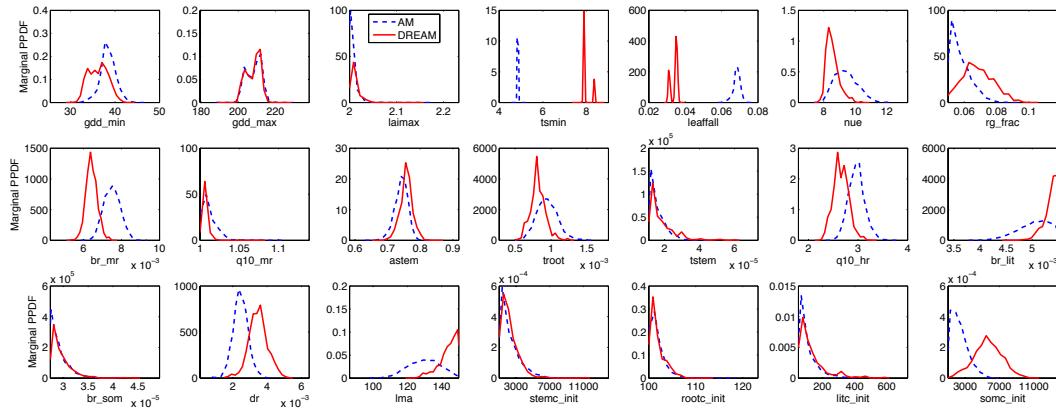
855 Figure 3. Results for the 4-dimensional trimodal distribution based on AM and DREAM.
856 Approximated (histogram) and actual (red curve) marginal posterior distributions of x_1 from (a-c)
857 three different runs of AM and (d) four interacting chains of DREAM; and (e) evolution of
858 sampled x_1 values with DREAM in the four chains, where each chain is coded with a different
859 color.



860

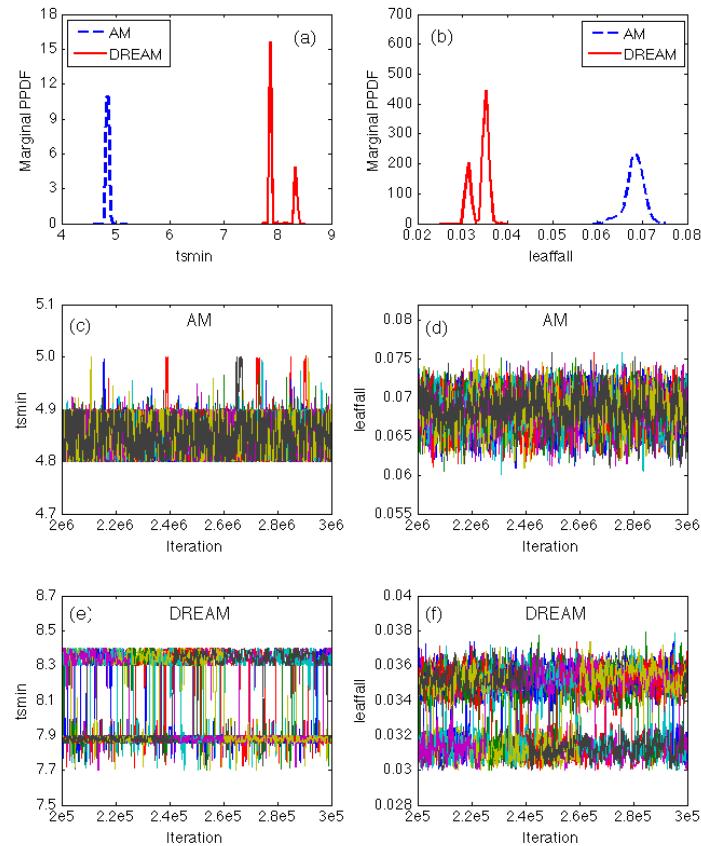
861 Figure 4. Gelman Rubin \hat{R} statistics of all the 21 parameters in the DALEC model (a) for the
862 last 1,000,000 iterations from ten independent AM runs and (b) for the last 100,000 iterations
863 from the DREAM simulation using ten chains. The values less than the threshold of 1.2 suggest
864 chain convergence.

865



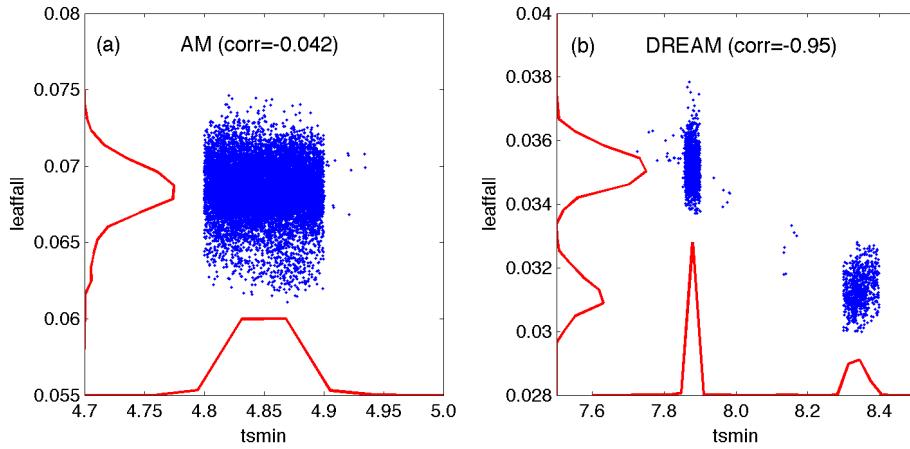
866

867 Figure 5. Estimated marginal posterior probability density functions (PPDF) of the 21 parameters
 868 in DALEC model based on the AM and DREAM algorithms.



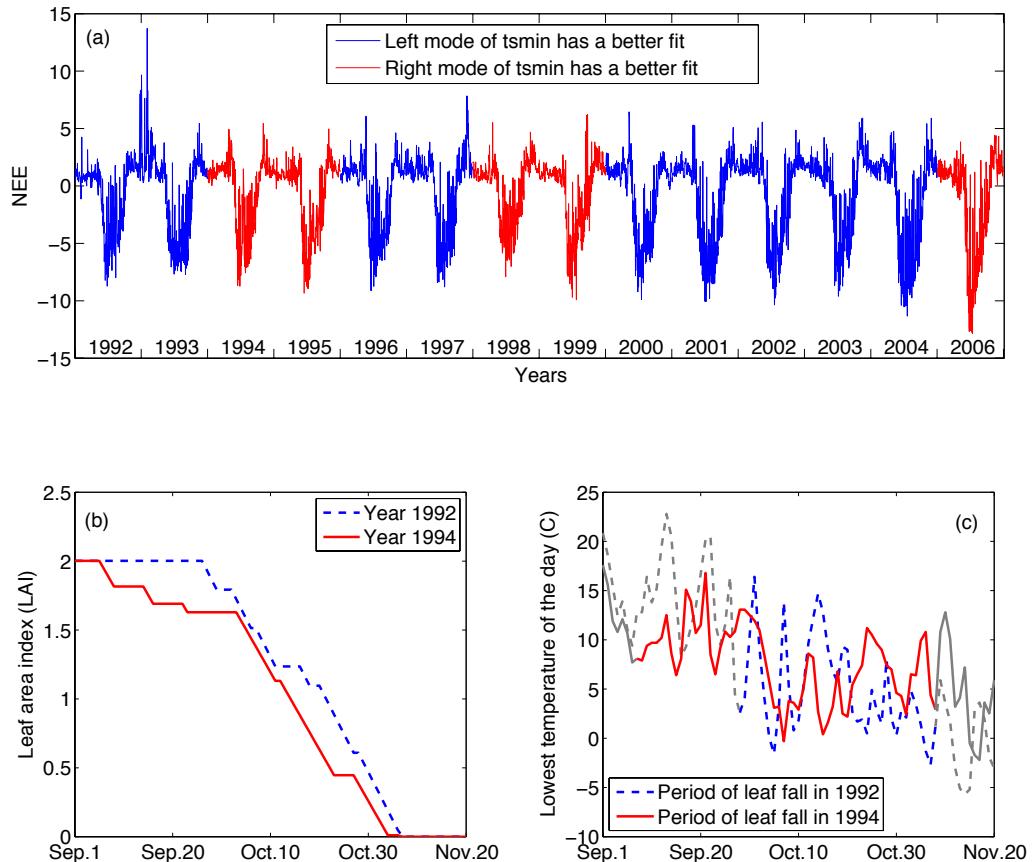
869

870 Figure 6. AM and DREAM results for parameters $tsmin$ and $leaffall$ in the DALEC model. The
871 estimated marginal posterior distributions of (a) $tsmin$ and (b) $leaffall$; Trace plots of (c) sampled
872 $tsmin$ and (d) sampled $leaffall$ with AM using ten independent chains; and trace plots of (e)
873 sampled $tsmin$ and (f) sampled $leaffall$ with DREAM using ten interacting chains. The evolution
874 of each chain is coded with a different color.

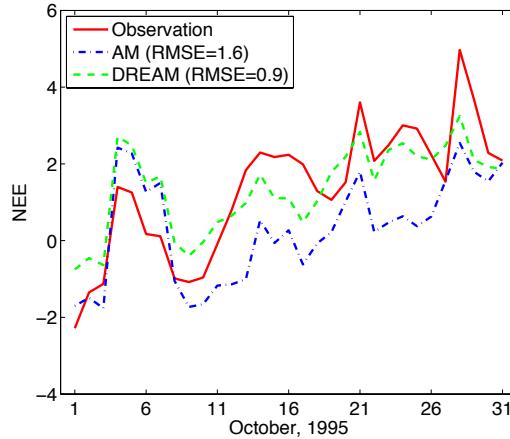


875

876 Figure 7. Posterior distributions of parameters *tsmin* and *leaffall* simulated by (a) AM and (b)
877 DREAM. AM simulation results exhibit a negligible correlation coefficient (corr)
878 between the two parameters with a value of -0.042, while DREAM results show that the two parameters are
879 strongly correlated with the corr value of -0.95.

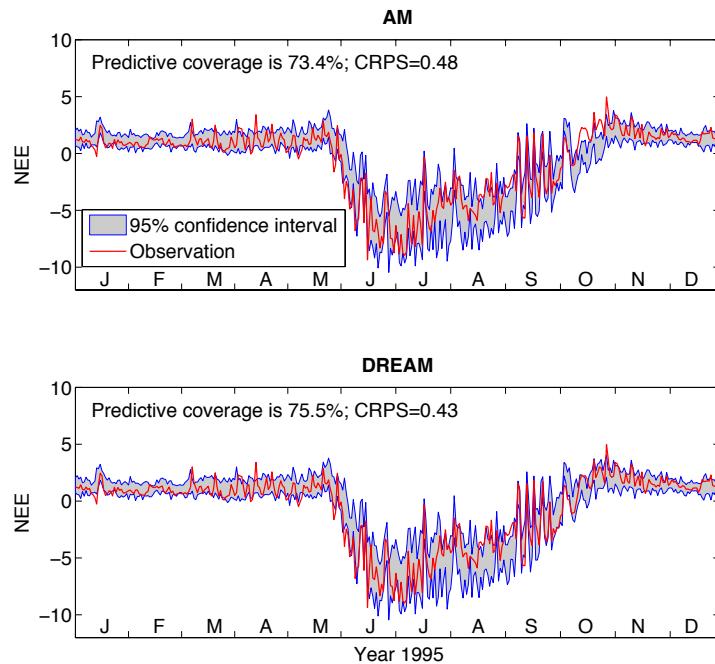


880
 Figure 8. (a) Observed NEE with years highlighted in red where the left mode of $tsmin$ has a
 881 better model fit and years highlighted in blue where the right mode of $tsmin$ has a better model
 882 fit; (b) the simulated leaf area index (LAI) of years 1992 and 1994; and (c) the recorded lowest
 883 temperature of years 1992 (blue) and 1994 (red). The blue and red lines in (c) highlight the
 884 corresponding periods of leaf fall until LAI becomes zero for 1992 and 1994, respectively. The
 885 color scheme is synchronized between (a), (b), and (c) frames. Note that decreases in LAI as
 886 predicted by our simplified version of DALEC reflect chlorophyll loss rather than leaf drop.
 887



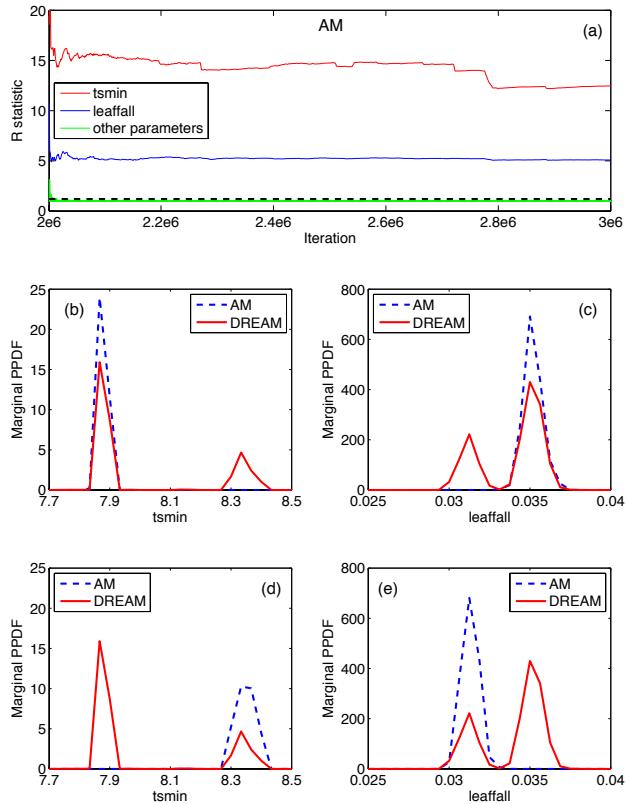
888

889 Figure 9. Simulated NEE values based on the optimal parameters (i.e., the MAP values listed in
890 Table 1) estimated by the AM and DREAM algorithms for October, 1995. The Root Mean
891 Square Error (RMSE), indicates that DREAM produces a better model fit than AM.



892

893 Figure 10. 95% confidence intervals of the simulated NEE values in year 1995 based on the
894 parameter samples from AM and DREAM. Two measures of predictive performance, CRPS
895 statistic and predictive coverage, indicate that DREAM outperforms AM in prediction.



896

897 Figure 11. Results of two independent chains of AM with the initial covariance matrix
 898 constructed using the converged DREAM samples. The \hat{R} statistic in (a) suggests that different
 899 AM chains converged to different *tsmin* and *leaffall* values. One chain captures (b) the left mode
 900 of *tsmin* and (c) the corresponding right mode of *leaffall*; and the other chain identifies (d) the
 901 right mode of *tsmin* and (e) the corresponding left mode of *leaffall*. No single AM chain can
 902 capture all the modes of the two parameters within a reasonable number of MCMC iterations.