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Abstract
Calibration of terrestrial ecosystem models is important but challenging. Bayesian inference
implemented by Markov chain Monte Carlo (MCMC) sampling provides a comprehensive
framework to estimate model parameters and associated uncertainties using their posterior
distributions. The effectiveness and efficiency of the method strongly depend on the MCMC
algorithm used. In this study, a Differential Evolution Adaptive Metropolis (DREAM) algorithm
was used to estimate posterior distributions of 21 parameters for the data assimilation linked
ecosystem carbon (DALEC) model using 14 years of daily net ecosystem exchange data
collected at the Harvard Forest Environmental Measurement Site eddy-flux tower. The DREAM
is a multi-chain method and uses differential evolution technique for chain movement, allowing
it to be efficiently applied to high-dimensional problems, and can reliably estimate heavy-tailed
and multimodal distributions that are difficult for single-chain schemes using a Gaussian
proposal distribution. The results were evaluated against the popular Adaptive Metropolis (AM)
scheme. DREAM indicated that two parameters controlling autumn phenology have multiple
modes in their posterior distributions while AM only identified one mode. The calibration of
DREAM resulted in a better model fit and predictive performance compared to the AM.
DREAM provides means for a good exploration of the posterior distributions of model
parameters. It reduces the risk of false convergence to a local optimum and potentially improves
the predictive performance of the calibrated model.
Keywords: Bayesian calibration, MCMC sampling, AM algorithm, DREAM algorithm, DALEC

model, multimodality, terrestrial ecosystem models.
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1 Introduction

Prediction of future climate heavily depends on accurate predictions of the concentration of
carbon dioxide (CO;) in the atmosphere. Predictions of atmospheric CO; concentrations rely on
terrestrial ecosystem models (TEMs) to simulate the CO, exchange between the land surface and
the atmosphere. TEMs typically involve a large number of biogeophysical and biogeochemical
processes, the representation of which requires knowledge of many process parameters. Some
parameters can be determined directly from experimental and measurement data, but many are
also estimated through model calibration. Estimating these parameters indirectly from
measurements (such as the net ecosystem exchange (NEE) data) is a challenging inverse
problem.

Various parameter estimation methods have been applied to TEMs. For an overview, one
can refer to the OptIC (Optimization InterComparison) project (Trudinger et al., 2007) and the
REFLEX (REgional FLux Estimation eXperiment) project (Fox et al., 2009). In classical
optimization based approaches, inverse problems with a large number of parameters can often be
ill-posed in that the solution may not be unique or even may not exist (O’Sullivan, 1986). As an
alternative approach, the Bayesian framework provides a comprehensive solution to this
problem. In Bayesian methods, the model parameters are treated as random variables and their
posterior probability density functions (PPDFs) represent the estimation results. The PPDF
incorporates prior knowledge of the parameters, mismatch between model and observations, and
observation uncertainty (Lu et al., 2012). Thus, compared to other approaches in inverse
problems, Bayesian inference not only estimates model parameters, but also quantifies associated

uncertainty using a full probabilistic description.
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Two types of Bayesian methods are widely used in parameter estimation of TEMs,
variational data assimilation (VAR) methods (Talagrand and Courtier, 1987) and Markov chain
Monte Carlo (MCMC) sampling. VAR methods are computationally efficient, however, they
assume that the prior parameter values and the observations follow a Gaussian distribution, and
they require the model to be differentiable with respect to all parameters for optimization. In
addition, VAR methods can only identify a local optimum and approximate the PPDF by a
Gaussian function (Rayner et al, 2005; Ziehn et al., 2012). In contrast, MCMC sampling makes
no assumptions about the structure of the prior and posterior distributions of model parameters or
observation uncertainties. Moreover, the MCMC methods, in principle, can converge to the true
PPDF with an identification of all possible optima. Although it is more computationally intensive
than VAR approaches, MCMC sampling is being increasingly applied in the land surface
modeling community (Dowd, 2007; Zobitz et al, 2011).

One widely used MCMC algorithm is adaptive Metropolis (AM) (Haario et al. 2001). For
example, Fox et al. (2009) applied the AM in their comparison of different algorithms for the
inversion of a terrestrial ecosystem model; Jarvinen et al. (2010) utilized the AM for estimation
of ECHAMS climate model closure parameters; Hararuk et al. (2014) employed the AM for
improvement of a global land model against soil carbon data; and Safta et al. (2015) used the
AM to estimate parameters in the data assimilation linked ecosystem carbon model. The AM
algorithm uses a single Markov chain that continuously adapts the covariance matrix of a
Gaussian proposal distribution using the information of all previous samples collected in the
chain so far (Haario et al., 1999). As a single-chain method, AM has difficulty in traversing
multi-dimensional parameter space efficiently when there are numerous significant local optima;

and AM can be unreliable for estimating the PPDFs of the parameters that exhibit strong
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correlation. In addition, the AM algorithm uses a multivariate Gaussian distribution as the
proposal to generate candidate samples and evolve the chain. AM, therefore, particularly suitable
for Gaussian shaped PPDFs, but it may not converge properly to the distributions with multiple
modes and those with heavy tails like the Cauchy distributions. Moreover, AM suffers from
uncertainty about how to initialize the covariance of the Gaussian proposal. Poor initialization of
the proposal covariance matrix results in slow adaptation and inefficient convergence.

The Gaussian proposal is also widely used in non-AM MCMC studies that involve TEMs.
For example, Ziehn et al. (2012) used the Gaussian proposal for the MCMC simulation of the
BETHY model (Knorr and Heimann, 2011) and Ricciuto et al. (2008, 2011) utilized the
Gaussian proposal in their MCMC schemes to estimate parameters in a terrestrial carbon cycle
model. The single-chain and Gaussian-proposal MCMC approaches have limitations in
sufficiently exploring the full parameter space and share low convergence in sampling the non-
Gaussian shaped PPDFs and thus may end up with a local optimum with inaccurate uncertain
representation of the parameters. Therefore, this poses a question on whether the AM and the
widely used MCMC algorithms with Gaussian proposal generate a representing sample of the
posterior distributions of the underlying model parameters. While we expect that
computationally expensive sampling methods for parameter estimation yield a global optimum
with an accurate probabilistic description, in reality, we may in many cases obtain a local
optimum with an inaccurate PPDF due to the limitations of these algorithms.

In this study, we employ the differential evolution adaptive Metropolis (DREAM)
algorithm (Vrugt et al., 2008, 2009a; Zhang et al., 2013; Lu et al., 2014) for an accurate Bayesian
calibration of an ecosystem carbon model. The DREAM scheme runs multiple interacting chains

simultaneously to explore the entire parameter space globally. During the search, DREAM does
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not rely on a specific distribution, like the Gaussian distribution used in most MCMC schemes,
to move the chains. Instead, it uses the differential evolution optimization method to generate the
candidate samples from the collection of chains (Price et al., 2005). This feature of DREAM
eliminates the problem of initializing the proposal covariance matrix and enables efficient
handling of complex distributions with heavy tails and strong correlations. In addition, as a
multi-chain method, DREAM can efficiently sample multimodal posterior distributions with
numerous local optima. Thus, the DREAM scheme is particularly applicable to complex and
multimodal optimization problems.

While multimodality is a potential feature of parameters in complex models (Thibault et al,
2011; Zhang et al., 2013), its existence has not been well documented in terrestrial ecosystem
modeling due to the limitations of methods that have been applied in most previous studies. Here
we apply both the DREAM and the AM methods to three benchmark functions and a TEM to
estimate the parameter distributions. In the latter case, we estimate the PPDFs of 21 process
parameters in the data assimilation linked ecosystem carbon (DALEC) model. The objectives of
this study are to (1) present a statistically sound methodology to solve the parameter estimation
problems in complex TEMs and to improve the model simulation; (2) characterize parameter
uncertainty in detail using accurately sampled posterior distributions; and (3) investigate the
effects of model calibration methods on parameter estimation and model performance. This work
should provide ecological practitioners with valuable information on model calibration and
understanding of the TEMs.

In the following Section 2, we first briefly summarize the general idea of Bayesian
calibration, and describe the AM and DREAM algorithms. Then in Section 3, we compare the

performance of the two algorithms in sampling three known target distributions. Next in Section
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4, the application of the DREAM algorithm to the DALEC model is presented and discussed; in
comparison, we also discussed the results from the AM sampler. Finally in Section 5, we close
this paper with our main conclusions.

2 Bayesian calibration and MCMC simulation

2.1 Bayesian calibration

Bayesian calibration of a model states that the posterior distribution p(x|D) of the model
parameters X, given observation data D, can be obtained from the prior distribution p(x) of x and
the likelihood function L(x|D) using Bayes’ theorem (Box and Tiao, 1992) via,

p(x|D) = cL(x|D)p(x) O]
where ¢ is a normalization constant. The prior distribution represents the prior knowledge about
the parameters. It is usually inferred from information of previous studies in similar sites or from
expert judgment. In the lack of prior information, a common practice is to use uninformative
priors within relatively wide parameter ranges such that the prior distribution has little influence
on the estimation of the posterior distribution.

The likelihood function measures the model fits to the observations. Selecting a likelihood
function suitable to a specific problem is still under study (Vrugt et al., 2009b). A commonly
used likelihood function is based on the assumption that the differences between the model
simulations and observations are multivariate normally distributed, leading to a Gaussian
likelihood such as the work of Fox et al. (2009), Hararuk et al. (2014), and Ricciuto et al. (2008,
2011). In this work, we also use the Gaussian likelihood, with uncorrelated variances that are
evaluated from the provided daily observation uncertainties. The effect of data correlations on

the inferred parameters was assessed in our previous study (Safta et al., 2015).
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2.2 MCMC sampling

In most environmental problems, the posterior distribution cannot be obtained with an
analytical solution and is typically approximated by sampling methods such as MCMC. The
MCMC method approximates the posterior distribution by constructing a Markov chain whose
stationary distribution is the target distribution of interest. As the chain evolves and approaches
the stationary, all the samples after chain convergence are used for posterior distribution
approximation, and the samples before convergence, which are affected by the starting states of
the chain, are discarded. The earliest MCMC approach is the well-known random walk
Metropolis sampler (Metropolis et al., 1953). Assume at iteration # we have obtained the samples
{Xo, X1, ..., Xt}, Where X is the initial sample from a certain distribution (e.g., the parameter prior
distribution). Then the Markov chain evolves in the following way. First, a candidate point z is

sampled from a symmetric proposal distribution g, which has the property ¢(z|x,) =q(x, |z).

Next, the candidate point is either accepted or rejected according to a Metropolis ratio o

calculated as

mm[ p(z|D)
a={""| plx,|D)
1 if p(x,|D)=0

1| if D)>0
} if p(x,|D) @

where p(z|D) and p(x,|D) denote the density of the posterior distribution evaluated at z and x,,
respectively. Lastly, if the candidate is accepted, the chain uses the sample x,;; = z at iteration
t+1; otherwise, it keeps the current sample x4 = X.

The Metropolis sampler is the basis of many existing MCMC sampling schemes. The well-
constructed MCMC schemes have been theoretically proven to converge to the appropriate target
distribution p(x|D) under certain regularity conditions (Robert and Casella, 2004, p.270).

However, in practice the convergence rate is often impractically slow, which suggests that within
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a limited finite number of iterations, some inefficient schemes may result in an unrealistic
distribution. The inefficiency is typically resulted from an inappropriate choice of the proposal
distribution used to generate the candidates. Either wide or narrow proposal distribution can
cause inefficient chain mixing and slow chain convergence (Lu et al., 2014). Hence, the
definition of the proposal distribution is crucial and determines the efficiency and the practical
applicability of the MCMC simulation.
2.3 AM algorithm

The adaptive Metropolis (AM) algorithm is a modification to the standard Metropolis
sampler (Haario et al., 2001). The key feature of the AM algorithm is that it uses a single
Markov chain that continuously adapts to the target distribution via its calculation of the proposal
covariance using all previous samples in the chain. The proposal distribution employed in the
AM algorithm is a multivariate Gaussian distribution with means at the current iteration x; and a
covariance matrix C; that is updated along the chain evolution. To start the chain, the AM first
selects an arbitrary, strictly positive definite initial covariance Cy according to the best prior
knowledge that may be very poor. Then after a certain number of iterations 7, the covariance is

updated based on the samples gained so far,

C, t<T
C- 3)

s,Cov(x,, -+, X )+s,el,t>T

where ¢ is a small value chosen to ensure C;does not become singular, I; denotes the d-
dimensional identity matrix and s, is a scaling parameter depending on the dimensionality of the
parameter X to ensure reasonable acceptance rates. As a basic guideline, Haario et al. (2001)
suggested choosing the value s, = 2.4°/d, which is shown to be optimal for Gaussian targets and

Gaussian proposal distributions (Gelman et al., 1995).
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To apply the AM algorithm, an initial covariance Cy must be defined. The choice of Cy
critically determines the success of the algorithm. For example, when the variance of Cj is too
large, it is possible that no proposals are accepted within an iteration, and that the chain will
remain at the initial state without any movement. This situation continues as the chain evolves,
and the use of updated C, would not make any difference because the variances of C,are
essentially zero since all the previous samples have the same values. In this case, the AM
sampler would get stuck in the initial state without exploring the parameter space. To alleviate
this problem and start the AM fairly efficiently, we can define Cy based on some prior
knowledge about the target distribution. When such information is not available, which is usually
the case for complex models, some test simulations are needed. For example, Hararuk et al.
(2014) inferred Cy from a test run of 50,000 community land model simulations in estimating the
PPDFs of soil carbon related parameters.

The construction of C; is another critical influence on the AM performance. In practice,
some adjustments on C;are necessary to improve the AM efficiency. For example, on the basis
of Eq. (3), the C; can be shrunk or amplified by some constant according to the chain evolution.
When the chain does not have enough movement after a large number of iterations, we shrink C;
a little bit to increase acceptance of new samples, and vice versa. The techniques used in the
formulation of Cpand C,may improve the AM efficiency in some degree for some problems.
However, the computational cost spent on applying these techniques is not negligible (such as
the test runs used for determining the Cp) and some strategies even require artificial control (such
as manual adjustment of the scaling factor of C;). Moreover, determining a reasonable Cyand C;

become very difficult for high-dimensional problems.

10
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To improve efficiency in high-dimensional case, Haario et al. (2006) extended the standard
AM method to componentwise adaptation. This strategy applies the AM on each parameter
separately. The proposal distribution of each component is a 1D normal distribution, which is
adapted in a similar manner as in the standard AM algorithm. However, the componentwise
adaptation does not work well for distributions with a strong correlation. Safta et al. (2015)
applied an iterative algorithm to break the original high-dimensional problem into a sequence of
steps of increasing dimensionality, with each intermediate step starting with an appropriate
proposal covariance based on a test run. This technique provided a rather reasonable proposal
distribution, but the computational cost used to define the proposal was rather high.

AM is a single-chain method. As a single chain, it is particularly difficult to judge the
convergence. Even the most powerful diagnostics cannot guarantee that the chain has converged
to the target distribution (Gelman and Shirley, 2011). One solution to alleviate the problem is

running multiple independent chains with widely dispersive starting points and then using the
diagnostics for multi-chain schemes, such as the R statistic of Gelman and Rubin (1992), to

check convergence. The R statistic calculates the ratio of between-chain variance to with-in

chain variance. When the chain has a good mixing and all the chains converge to the same
PPDF, the R value is close to one, and in practice the threshold of 1.2 is usually used for

convergence diagnosis. On the other hand, when the chain does not mix well and different chains

converge to the different portion of the target distribution, it is unlikely that the R will reach the
value of 1.2 required to declare convergence. Generally, this situation suggests that multiple
modes exist in the target PPDF and the AM sampler is unable to identify all the modes using a

single chain.

11
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2.4 DREAM algorithm

The DREAM algorithm is a multi-chain method (Vrugt, 2016). Multi-chain approaches use
multiple chains running in parallel for global exploration of the posterior distribution, so they
have several desirable advantages over the single-chain methods, particularly when addressing
complex problems involving multimodality and having a large number of parameters with strong

correlations. In addition, the application of multiple chains allows utilizing a large variety of

statistical measures to diagnose the convergence including the R statistic mentioned above.
DREAM uses the Differential Evolution Markov Chain (DE-MC) algorithm (ter Braak,
20006) as its main building block. The key feature of the DE-MC scheme is that it does not
specify a particular distribution as the proposal, but proposes the candidate point using the
differential evolution method based on current samples collected in the multiple chains. Thus,
DE-MC can apply to a wide range of problems whose distribution shapes are not necessarily
similar to the proposal distribution, and it also removes the requirement of initializing the
covariance matrix as in AM. As previously, we denote the sample at iteration ¢ of a single chain
by a d-dimensional vector x,, then the samples from N chains at the iteration ¢ construct a N x d
matrix saved in X;; usually N=2d. In DE-MC, the candidate point 7' in each chain i={1, 2, ..., N}
are generated by taking a fixed multiple of the difference of two randomly chosen chains of X,

with indexes »; and 7, 1.€.,

2=x+yX] -XP)+e, r#En#i 4)
where the multiplier y is suggested as 2.4 /+/2d for its optimal performance, and for every 10"
iteration y=1.0 to facilitate jumping between different modes; ¢ is drawn from a symmetric d-

dimensional distribution with a small variance compared to the width of the target distribution.

By accepting the candidate point with the Metropolis ratio defined in Eq. (2), a Markov chain is

12
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obtained with its limiting distribution of the target PPDF, as proved in ter Braak (2006) and
Vrugt et al. (2008, 2009a). The DE-MC algorithm can successfully simulate the multimodal
distributions, because it directly uses the current location of the multiple chains stored in X,
instead of Cov(X) from a single chain, to generate candidate points, allowing the possibility of
direct jumps between different modes. In addition, it has no difficulty in simulating the
distributions with heavy tails, because it does not use the Gaussian proposal whose function gets
small much faster than the heavy-tailed functions in the tails and thus causes sampling problems
as reported in Robert and Casella (2004) and demonstrated in Section 3 of this work.

The DREAM algorithm maintains the nice features of the DE-MC, but greatly accelerates
the chain convergence. First, DREAM generates the candidate sample based on the difference of
more than one pair of chains, which brings more information about the target distribution and
thus accelerates the convergence. Secondly, DREAM uses a subspace sampling strategy that
selectively updates only some parameters when generating a candidate sample. This strategy
improves efficiency in high-dimensional samplings as the performance of optimization
deteriorates exponentially with increasing dimensions. In addition, the subspace sampling
strategy also enables the number of chains less than the number of parameters, which reduces the
waste of computing resources, as each individual chain requires a certain portion of samples to
be discarded before converging to the target distribution. Thirdly, DREAM explicitly handles the
unproductive chains stuck in regions of the parameter space that are not contributing to the target
PPDF. This strategy of removing outlier chains is very important for multi-chain methods, as the
samples from these outlier chains will not only deteriorate the generation of the candidate points,
which thus slow down the movement of other robust chains, but even worse they may prevent

the convergence to the target distribution. For example, if one chain keeps sampling the area

13



Biogeosciences Discuss., doi:10.5194/bg-2017-41, 2017
Manuscript under review for journal Biogeosciences
Discussion started: 22 February 2017

(© Author(s) 2017. CC-BY 3.0 License.

289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307

308
309

310

311

isolated from the target distribution that other chains are sampling, it will make the R statistic
almost impossible to reach the threshold of 1.2 required to declare convergence. Therefore,
DREAM detects the outlier chains and forces their current states to the positions of other well-
performed chains, which greatly speeds up the convergence. More information about the
DREAM algorithm was presented in Vrugt et al. (2008, 2009a, 2016) and Lu et al. (2014).
3 Comparison between AM and DREAM algorithms

It is useful to know the estimated PPDFs from a sampling algorithm are the desired target
posterior distributions. So, in this section we evaluate the performance of DREAM in sampling
three known target distributions and compare results with the widely used AM algorithm. The
three distributions are high-dimensional, heavy-tailed, and multimodal distributions that are
notoriously difficult to approximate with MCMC sampling and are typical problems in terrestrial
ecosystem modeling (Kinlan and Gaines, 2003; Stead et al., 2005; Thibault et al., 2011). In all
studies, the computational efficiency of the algorithms is evaluated by the accuracy of the
approximate posterior distribution for the same number of total function evaluations, although
DREAM uses multiple parallel chains and AM employs only one chain.
3.1 Case study I: a 50-dimensional Gaussian distribution function

The first case study is a high-dimensional convex problem. The test function is a 50-
dimensional (50 parameters) multivariate Gaussian distribution with the mean at the zeros. The
covariance matrix was constructed such that the variance of the ith dimension is equal to 0.1xixi

and the covariance of ith and jth variables is calculated as 0.05x%i xj. Both the AM and DREAM
located the initial states of the chains from a uniform distribution x € U[-50, 50]1. Besides,

AM used an identity matrix as its initial covariance Cy. DREAM used ten parallel chains and

AM run a single chain.

14
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The simulation results of 100,000 function evaluations for both AM and DREAM are
summarized in Figure 1, which depicts the evolution of the sample mean of parameter x;,
standard deviations of parameters x;o and xso, and the covariance between parameters xs and x3o.
The true values of these statistics were also shown in the figure with different symbols. Figure 1
indicates that DREAM can smoothly converge to the true values within the given function
evaluations, while AM exhibits difficulty in the approximation of the correct values, although it
can eventually converge to the true values with the iterations doubled (results not shown here).
This case study suggests that DREAM is more efficient than AM for high-dimensional problems.
3.2 Case study II: a 10-dimensional Cauchy distribution function

The second case study considers a 10-dimensional Cauchy distribution centered at zeros
and having identity matrix as its scale matrix. The marginal density in one dimension is shown in
Figure 2 (b) and (d) as the red curve. This test function represents the type of problems with
heavy tails. It is well known that MCMC schemes with Gaussian-shaped proposals have
difficulty in sampling the heavy-tailed distributions because the Gaussian probability density
function decays much faster than the heavy-tailed functions. This can cause the AM method to
fail to converge due to inefficient sampling. As shown in Figure 2 where we took the parameter
samples of one dimension as an example, Figure 2 (a) depicts the trace plot of x; from the AM
chain for the second half of total one million iterations. The figure indicates that in a long period
of iterations the chain of AM has no updates and is stuck in certain areas of the parameter space
that have negligible probabilities in the target distribution, resulting in a histogram dramatically
different from the true distribution in Figure 2 (b). In contrast, the DREAM sampler launched ten
chains and each chain evolved 100,000 iterations, so that the total function evaluations were the

same as the AM. The trace plot of the ten chains in Figure 2 (c¢) demonstrates that DREAM

15
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exhibits a very good mixing of the individual paths, therefore its sampled histogram displays a
near-perfect match with the true distribution in Figure 2 (d). This case study suggests that
DREAM is able to sample these heavy-tailed distributions more efficiently than MCMC
samplers with a Gaussian proposal such as the AM.

3.3 Case study III: a 4-dimensional trimodal distribution function

The third case study is a 4-dimensional trimodal distribution with three well-separated
modes at -8, 0, and 8, respectively. The modes have increasing weights in density; from left to
right the weights are 0.1, 0.3, and 0.6, respectively. The marginal probability density in one
dimension of this distribution is shown in Figure 3 (a)-(d) as the red curve. This type of
distribution is known for its difficulty to be approximated by the MCMC methods, because the
three modes are so far isolated that the chains need to jump between modes and it is common for
chains to get stuck in one mode with a few or even no visits to other modes for many iterations,
which greatly increases the number of simulations needed for convergence.

We implemented both the AM and DREAM algorithms using a million function
evaluations. The AM used one chain with one million iterations long; we run the AM ten times
and at each time the chain initialized with diverse starting points. The DREAM used four parallel
chains with each chain evolving 250,000 iterations. Figure 3 (a)-(c) present the histograms of the
sampled x; from three independent runs of AM. As shown, AM exhibits a rather poor
performance as each different trial converged to a different mode and none of the ten runs can
capture all the three modes, resulting in an unreliable approximation of the target distribution. A
single chain is typically incapable of dealing with this multimodal parameter space and providing
an accurate characterization within a limited number of iterations. With multiple interacting

chains running simultaneously, the simulation results can be significantly improved. As
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demonstrated in Figure 3 (d), the histogram of the marginal distribution from DREAM agrees
with the true mixture distribution very well. The density of the samples in each mode is
consistent with the weight of each peak in the distribution. Attributed to the differential evolution
technique defined in Eq. (4), DREAM allows for jumps between the different disconnected
modes. As illustrated in Figure 3 (e), each different chain jumps back and forth between the three
isolated modes with more visits in the mode having higher weight, resulting in a good mix of the
individual paths and consequently a relatively fast convergence to the true distribution.
4 Application to a terrestrial ecosystem model

In this section, we apply the DREAM algorithm to the data assimilation linked ecosystem
carbon (DALEC) model to estimate the posterior distributions of its parameters. In comparison,
the AM algorithm is also applied. DALEC is a relatively simple carbon pool and flux model
designed specifically to enable parameter estimation in terrestrial ecosystems. We used DALEC
to evaluate the performance of AM and DREAM in model calibration; we compared their
accurate simulations of the parameter PPDFs, model’s goodness-of-fit, and predictive
performance of the calibrated models. Previous studies based on MCMC methods that use
Gaussian proposals have not reported multimodality in the marginal PPDFs of the model
parameters, so it is important to know whether the parameters have multimodality; if the
multimodality exists, we assess whether or not DREAM can identify the multiple modes and
improve the calibration results and thus the predictive performance.
4.1 Description of the model and parameters for optimization

The DALEC v1 model is used here (Williams et al., 2005; Fox et al., 2009) with some
structural modifications (Safta et al., 2015). DALEC consists of six process-based submodels

that simulate carbon fluxes between five major carbon pools: three vegetation carbon pools for
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leaf, stem, and root; and two soil carbon pools for soil organic matter and litter. The fluxes
calculated on any given day impact carbon pools and processes in subsequent days.

The six submodels in DALEC are photosynthesis, phenology, autotrophic respiration,
allocation, litterfall and decomposition. Photosynthesis is driven by the aggregate canopy model
(ACM) (Williams et al., 2005), which itself is calibrated against the soil-plant-atmosphere model
(Williams et al., 1996). DALEC v1 was modified to incorporate the phenology submodel used in
Ricciuto et al. (2011), driven by six parameters. This phenology submodel controls the current
leaf area index (LAI) proportion of the seasonal maximum LAI (laimax). Spring LAI growth is
driven by a linear relationship to growing degree days (gdd), while senescence and LAI loss are
driven by mean air temperature. To simplify our model structure, senescence and LAI loss are
considered to occur simultaneously. In reality, leaves may still be present on the trees but
photosynthetically inactive due to the loss of chlorophyll. Here, this inactive LAI is considered
to have fallen and is added to the litter pool. To further reduce model complexity, the plant
labile pool in DALEC v1 was removed and a small portion of stem carbon is instead removed to
support springtime leaf growth each year. The six phenology parameters are a threshold for leaf
out (gdd_min), a threshold for maximum leaf area index (gdd_max), the temperature for leaf fall
(tsmin), seasonal maximum leaf area index (laimax), the rate of leaf fall (leaffall), and leaf mass
per unit area (/ma), respectively. Given the importance of maintenance respiration in other
sensitivity analyses (Sargsyan et al., 2014), we expanded the autotrophic respiration submodel to
explicitly represent growth respiration (as a fraction of carbon allocated to growth) and
maintenance respiration with the base rate and temperature sensitivity parameters.

So for the first three plant submodels, deciduous phenology has six parameters; ACM

shares one parameter, /ma, with the deciduous phenology and employs two additional
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parameters, leaf C:N ratio (which is fixed at a constant of 25 in the simulation) and
photosynthetic nitrogen use efficiency (nue); the autotrophic respiration model computes the

growth and maintenance respiration components and is controlled by three parameters, the

growth respiration fraction (rg_fiac), the base rate at 25°C (br_mr), and temperature sensitivity
for maintenance respiration (q/0_mr).

The allocation model partitions carbon to several vegetation carbon pools. Leaf allocation
is first determined by the phenology model, and the remaining available carbon is allocated to
the root and stem pools depending on the fractional stem allocation parameter (astem). The litter
fall model redistributes the carbon content from vegetation pools to litter pools and is based on
the turnover times for stem (zstem) and root (troot). The last submodel is a decomposition model
that simulates heterotrophic respiration and the decomposition of litter into soil organic matter

(SOM). This model is driven by the temperature sensitivity of heterotrophic respiration (g/0_hr),

the base turnover times for litter (br_lif) and SOM (br_som) at 25°C, and by the decomposition
rate (dr) from litter to SOM.

Model parameters are summarized in Table 1. These parameters were grouped according
to the six submodels that employ them, except for /ma that impacts both the deciduous leaf
phenology and ACM. The nominal values and numerical ranges for these parameters were
designed to reflect average values and broad uncertainties associated with the temperate
deciduous forest plant functional type that includes Harvard Forest (Fox et al., 2009; White et al.,
2000; Ricciuto et al., 2011). Observed air temperature, solar radiation, vapor pressure deficit, and
CO2 concentration were used as boundary conditions for the model.

In order to reduce computational time, we employed transient assumptions for running

DALEC. That is, for any given set of parameter values, DALEC was run one cycle only for 15
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years between 1992-2006 where observation data are available. Under this assumption, four
additional parameters were used to describe the initial states of two vegetation carbon pools
(stemc_init and rootc_init) and the two soil carbon pools (/itc_init and somc_init), as also
summarized in Table 1. Thus, a total of 21 parameters were considered and estimated in this
study.
4.2 Calibration data

The calibration data consist of the Harvard Forest daily net ecosystem exchange (NEE)
values, which were processed for the NACP site synthesis study (Barr et al., 2013) based on flux
data measured at the site (Urbanski et al., 2007). The daily observations cover a period of 15
years starting with the year 1992 and part of the data in the year 2005 is missing. Hill et al.
(2012) estimated that daily NEE values followed a normal distribution, with standard deviations
estimated by bootstrapping half-hourly NEE data (Papale et al., 2006; Barr et al., 2009). These
standard deviations have values between 0.2 and 2.5, with the mean value about 0.7. Total 14
years NEE data (years from 1992 to 2004 and year 2006) were considered here for model
calibration and their corresponding standard deviations were used to construct the diagonal
covariance matrix of the Gaussian likelihood function by assuming the data are uncorrelated.
4.3 Numerical experiments and calibration results

Both AM and DREAM were implemented to estimate the 21 parameters of the DALEC
model using the PPDFs. To avoid the influence of prior distributions on the investigation of the
posteriors estimated by the two algorithms, uniform priors were used for all parameters with the
ranges specified in Table 1. DREAM launched ten parallel chains starting at values randomly

drawn from the parameter prior distributions; and each chain evolved 300,000 iterations. Chain

convergence was assessed via the Gelman Rubin R statistic. Figure 4 (b) plots the R values of
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the 21 parameters for the last 100,000 iterations. The figure suggests that the last 50,000 samples

of each chain (i.e., total 500,000 samples from ten chains) can be used for the PPDF

approximation as the R has values below the threshold of 1.2.
AM used one chain and the chain has the same initialization with DREAM. In addition,
AM also requires the initialization of the covariance matrix of its Gaussian proposal. To facilitate

the convergence of AM, we constructed the initial covariance Cy based on the first 200,000

samples from the DREAM simulation. We conducted ten independent AM runs, so the same R
statistic can be used for convergence diagnosis. As AM is a single-chain algorithm, to make a
fair comparison with the multi-chain algorithm of DREAM, each AM chain simulated 3,000,000

samples, so that the number of function evaluations in one AM chain is the same with that of

DREAM using ten chains. The R values of all parameters based on the ten AM runs for the last
1,000,000 iterations are shown in Figure 4 (a). The figure indicates that AM has converged and
the last 500,000 samples from one chain were used for the PPDF approximation.

The estimated PPDFs from AM and DREAM are presented in Figure 5, and the optimal
parameter estimates, as represented by the maximum a posteriori (MAP), are summarized in
Table 1. Both AM and DREAM results show that all the 21 parameters can be well constrained
by the calibration data, although some studies reported that eddy-covariance observations along
could not identify all the model parameters with their posterior distributions significantly smaller
than their priors (Wang et al., 2007, Keenan et al., 2012, 2013). Whether a parameter is
identifiable depends on the model, model parameters, and the calibration data. When the
parameter related processes are necessary to simulate the model outputs whose corresponding
observation data are sensitive to the parameters, the parameters can usually be identified and

sometimes well constrained. For example, Keenan et al. (2013) showed that in their FEBAAR
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model with 40 parameters, many parameters couldn’t be constrained even with the consideration
of several data streams together. They found that these unidentifiable parameters might be
redundant in the model structure representation. Roughly speaking, for a simple model with a
few number of parameters, the parameters can be more identifiable than the complex models
with a large parameter size (Richardson et al., 2010, Weng and Luo, 2011). The DALAC model
used in this study is a simple model with considering only six processes and five carbon pools,
and all the 21 parameters were shown to be sensitive to the NEE data, despite that some are more
sensitive than others (Safta et al, 2015). So it is not surprising that both AM and DREAM
algorithms can constrain the parameters pretty well.

In comparison of the results between AM and DREAM, Figure 5 indicates that they
produced very similar PPDFs for many parameters, such as gdd max, astem, br_som, rootc_init,
and /itc_init. However, for parameters tsmin and leaffall, the estimated PPDFs of the two
algorithms are substantially different. This also can be seen in Table 1, where the differences of
MAP values for most parameters are relatively small between the two algorithms, but for tsmin
and leaffall, the relative difference was 38% and 94%, respectively. The parameter tsmin
represents the temperature triggering leaf fall and the leaffall represents the rate of leaf fall on
days when the temperature is below tsmin. We further analyzed the simulations of these two
parameters from AM and DREAM in Figure 6. Figure 6 (a) and (b) illustrate two separated
modes in the estimated marginal PPDFs of zsmin and leaffall obtained from DREAM, while AM
only identifies one mode for both parameters and they dramatically differ from any modes
simulated by DREAM. For example, the single mode of zsmin identified by AM gives a lower
temperature threshold (meaning a later initiation of senescence) that is compensated by a higher

estimate of leaffall rate compared to DREAM. As shown in the trace plots of Figure 6 (c) and
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(d), all ten independent runs of AM converged to a single mode, with values of tsmin between
4.8 to 5.0 and values of leaffall between 0.06 and 0.075. In contrast, each of the ten parallel
chains of DREAM, as exhibited in Figure 6 (e) and (f), jumps back and forth between two
modes. And the two parameters compensate each other by jumping in opposite directions, where
tsmin is more likely to be near the mode with a smaller value of 7.9 than that of 8.35 and leaffall
is more likely to be near the mode of a larger value of 0.035 than that of 0.031.

In addition, the simulated joint PPDFs of the two parameters, tsmin and leaffall, are
different between AM and DREAM. As illustrated in Figure 7, AM results exhibit a negligible
correlation between the two parameters with the correlation coefficient of -0.042, while DREAM
results show that the two parameters are strongly negatively correlated with the correlation
coefficient of -0.95. As demonstrated in Figure 7 (b), the samples of tsmin and leaffall from
DREAM fall almost perfectly on the line with slope of -1, where the mode with smaller tsmin
values corresponds to the mode of larger leaffall and the similar correspondence can be found for
the other pair of modes.

The existence of two modes for zsmin and leaffall and the negative correlation between the
two parameters are not unreasonable as we used multiple years of observations for parameter
estimation. It is possible that in some years the senescence was triggered later (i.e., a smaller
tsmin) but proceded at a faster rate (i.e., a larger /eaffall), while in some other years the
senescence was triggered earlier (i.e., a larger tsmin) but proceded at a slower rate (i.e., a smaller
leaffall). Given our model simplification of concurrent senescence and leaf fall and our use of
NEE rather than LAI observations as a constraining variable, we note that these optimized
parameters are more likely to reflect the process of chlorophyll loss than actual leaf loss. Cool

temperatures are a key driver of senescence at this site (Richardson et al., 2006).
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Figure 8 (a) highlights the years in red where the model based on the right mode of tsmin
and the left mode of senescence rate (leaffall) has a better fit to the observed NEE, i.e., years
1994, 1995, 1998, 1999, and 2006. The remaining years are highlighted in blue where the left
mode of tsmin and the right mode of /eaffall result in a better model fit. Taking years 1992 and
1994 as an example, we examined the leaf area index (LAI) in the period of senescence. Figure 8
(b) shows that at the first few days of September in both years, the values of LAI were the same
around 2.0; after that the timing of senescence during the two years differs dramatically. In year
1994, the value of LAI started decreasing on September 7" and then decreased slowly over
several distinct cool periods during the rest of September and early October until it hit zero in
November 7"; the process took about 61 days. In contrast, in year 1992, the value of LAI
remained near the maximum value during all of September, then dropped rapidly in October and
hit zero also on November 7™; this process took about 40 days. The changes in the LAI between
the two years reflect the variability in the time of year when the leaves start to drop and the rate
of leaf drop. Although the leaf fall in 1992 was triggered later than in 1994, the leaves in 1992
dropped at a faster rate, resulting in LAI approaching zero at the same time of the year.

Figure 8 (c) depicts the recorded lowest temperature of the days between September 1% and
November 20™ for years 1992 and 1994, where the red line highlights the period between the
first leaf and the last leaf drops in 1994. The blue line highlights the corresponding period of
leaf fall in 1992. Since the senescence was triggered in the early September of 1994, the
temperature of triggering leaf fall was relatively high, about 8.1°C (associated with the higher
mode of zsmin) as shown in Figure 8 (c). In the rest days of September in 1994 following the
senescence trigger, temperatures remained warm. The slower leaf fall rate associated with

periodic warm conditions (temperatures above ¢smin) and the lower mode of leaffall caused a
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slow leaf fall in September of 1994 as shown in Figure 8 (b). In comparison, in 1992, senescence
was triggered at the end of September with a low temperature of 2.6°C. Then in October with
colder temperatures, the leaves drop at a rapid rate associated with the consistent cold
temperatures and higher mode of /eaffall. Especially in late October, the temperatures are
consistently below zsmin, causing a fast rate of leaf fall, as shown in Figure 8 (b) where the
decreasing rate of the LAI in the late October of 1992 is very large. This indicates that a higher
temperature trigger is usually associated with a lower leaf fall rate and vice versa.

The bimodality identified in the DREAM simulation and examined in the scenarios above
reflects the inability of the model structure to predict the observations consistently with a single
set of parameters. This bimodality examined in DREAM may be caused in part by an incomplete
representation of the senescence process. Using a temperature threshold (parameter zsmin) and a
constant rate of leaf fall (parameter leaffall) to predict senescence is almost certainly an
oversimplification. In reality, the process of senescence is also affected by day length. Longer
days and warmer temperatures cause a relatively slow rate of leaf fall, whereas shorter days and
cooler temperatures accelerate the rate that the leaves fall (Leigh et al, 2002; Saxena, 2010). The
higher mode of zsmin means that senescence is initiated earlier, when day lengths are still
relatively long. This may partially explain why this mode is associated with a lower mode of the
leaffall parameter. Other factors not represented in DALEC are also likely to play a role such as
soil moisture, or a more complex relationship with spring phenology (Keenan et al., 2015).

The difference in estimated parameters between AM and DREAM causes different
simulations of NEE, especially during the autumn. As an example, Figure 9 illustrates the
comparison of the simulated NEE to observations for a month in Autumn of the year 1995 based

on MAP estimates obtained under AM and DREAM. Visual inspection indicates that the
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simulated NEE from the DREAM-calibrated parameters provides a better fit to the observations,
as also indicated by the smaller root mean squared errors (RMSE). In addition, the maximum log
likelihoods listed in Table 1 suggest that overall the DREAM-estimated parameters produce a
better model fit to the observations, comparing -6578.3 with the smaller AM value of -6662.6.
4.4 Assessment of predictive performance

To further compare the calibration results between AM and DREAM, we explore their
predictive skill based on the sampled PPDFs of model parameters. We employed the Bayesian
posterior predictive distribution (Lynch and Western, 2004) to assess the adequacy of the
calibrated models. Specifically, the posterior distribution for the predicted NEE data, p(y|D), is
represented by marginalization of the likelihood over the posterior distribution of model

parameters X as
p(yID)= [ p(y |x)p(x | D)dx . )

In approximation of p(y|D), we used the converged MCMC samples from p(x|D). The last 500
samples of each chain (total 500x10=5000 samples) were considered; for each parameter sample
we drew 20 samples of the 14 years NEE data from their normal distributions, where the mean
values are the model simulations. Then the total 100,000 prediction samples were used to
approximate the posterior predictive density p(y|D).

From the estimated p(y|D), we extracted the 95% confidence intervals for daily NEE
values in the year 1995 and presented the results in Figure 10. The top panel corresponds to the
results of AM and the bottom panel to DREAM. Overall, the predictive intervals from both
algorithms cover well the observed NEE for the entire time range with occasional spikes outside
the intervals. Closer visual inspection indicates that DREAM produces better predictive

performance than AM. As seen during the period in October, the predictive interval of DREAM
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can enclose most of the observed NEE while AM actually has under-prediction, causing the
observations outside the intervals.

In order to quantitatively compare the predictive performance of the calibrated models
based on AM and DREAM, we defined two metrics, a probabilistic score called CRPS and
predictive coverage. The CRPS (Gneiting and Raftery, 2007) measures the difference between
the cumulative distribution function (CDF) of the observed data and that of the predicted data.
The lower the value of the CRPS is, the better the predictive performance. The predictive
coverage measures the percent of observations that fall within a given predictive interval. A
larger value of the predictive coverage suggests better predictive performance. Figure 10 shows
that AM gives a CRPS value of 0.48 while the value of DREAM is 0.43. The lower value of
DREAM indicates that, on average, DREAM produces tighter marginal predictive CDF that are
better centered around the NEE data, suggesting its superior predictive performance to AM in
terms of both accuracy and precision. In addition, the predictive coverage of DREAM is larger
than that of AM, attesting once again to its superior performance in prediction.

4.5 Investigation of reliability of the algorithms

Bayesian calibration of TEMs is challenging due to high model nonlinearity, high
computational cost, a large number of model parameters, large observation uncertainty, and the
existence of local optima. So, a robust and efficient MCMC algorithm is desired to give reliable
probabilistic descriptions of the TEM parameters.

In this section, we investigate the influence of the proposal initialization on the
computational efficiency and reliability of AM. In above analysis, the initial covariance matrix
Cy of AM was constructed based on DREAM samples before convergence. This setting

facilitated the convergence of AM but resulted in AM false convergence to inaccurate PPDFs,
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leading to a relatively poor calibration and prediction performance. We implemented another
AM simulation here for further examination. In this new simulation, we constructed two
independent AM chains; both chains initialized Cy using the DREAM samples after
convergence, but one chain only used zsmin samples around its left mode and leaffall samples
around its right mode, and the other chain used zsmin samples around its right mode and /leaffall

samples around its left mode. Each chain evolved 3,000,000 iterations, and for the last 1,000,000
iterations the convergence diagnostic R values were calculated and shown in Figure 11 (a). The

figure indicates that most parameters have R less than the threshold of 1.2 except parameters
tsmin and leaffall whose values are far above 1.2 and no signs show that they are going
significantly smaller in the following one million iterations. This suggests that the two chains
converged to different optima for these two parameters. We then estimated PPDFs using the last
500,000 samples from each chain respectively. The results for tsmin and leaffall are shown in
Figure 11 (b)-(e). The figures illustrate that the samples from one AM chain can only identify
one mode, and this mode is consistent with the samples used to construct the initial covariance
matrix Cy.

As a single-chain sampler, it is conceptually possible for AM to become trapped in a single
mode (Jeremiah et al., 2009). Consider a distribution with two far-separated modes and assume
that the chain is initialized near one of the two modes (both samples initialization and proposal
covariance initialization). At the beginning of the sampling, AM will explore the area around the
mode where it is initialized and start identifying the first mode. Since the candidate samples
generated by the Gaussian proposal have higher Metropolis ratios (Eq. (2)) in the nearby area
than in the far-away regions of the identified mode, the chain is hardly to move to the other

mode. When the Gaussian proposal covariance matrix C, begins to update, the chance of the
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chain jumping to the other mode depends on the relative scale of the proposal covariance and the
distance between the two modes. When the modes separation exceeds the range of the proposal,
AM is less likely to escape the identified local mode.

Although the two AM chains can only simulate one of the two modes for tsmin and
leaffall, the estimated PPDFs for the other 19 parameters from the two chains are close to each
other and both similar to the DREAM results. This finding once again shows the reasonable
existence of the two separated modes and their equivalent importance. With an improved
initialization of Cj in the new simulation, the performance of AM also improved as it can
accurately simulate uni-modal PPDFs and capture one mode for the multi-modal PPDFs. This
investigation suggests that for AM an appropriate initialization of its Gaussian proposal has a
significant impact on its performance. We made several test runs of AM and only when we
initialized Cy using the complete set of converged DREAM samples, was the AM able to
produce PPDFs similar to the ones resulted from DREAM with identifying all the possible
optima. However, the information of a reasonable Cj in practice is either unavailable or very
computationally expensive to obtain.

5 Conclusions

In this study we compare the performance of two MCMC algorithms, namely AM and
DREAM, for sampling high-dimensional multi-modal posterior distributions for models that
exhibit non-linear behavior. We present results obtained in canonical, manufactured
configurations, as well as the terrestrial ecosystem model DALEC. The AM algorithm is
sensitive to initial conditions when sampling multi-modal posteriors. By comparison, DREAM’s
performance does not depend on initialization of the algorithm. Thus, DREAM is particularly

suitable to calibrate complex terrestrial ecosystem models, where the existence of local optima is
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always a concern and where often little information about the parameters is known in order to
optimize the algorithm implementation. In this study, the application in an ecosystem carbon
model indicates that, compared to the AM, the DREAM can accurately simulate the posterior
distributions of the model parameters, resulting in a better model fit, superior predictive
performance, and perhaps identifying structural errors or process differences between the model
and ecosystem from which observations were used for calibration.
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836 List of Tables
837  Table 1. Nominal values and ranges of the 21 parameters for optimization in the DALEC model,
838  and the maximum a posteriori (MAP) estimates based on the AM and DREAM samplers.
MAP estimates
ParName | Nom. Val. Range AM DREAM
LL=-6662.6 | LL=-6578.3
gdd min 100 10-250 37.90 39.53
g gdd _max 200 50-500 203.44 201.77
& | tsmin 5 0-10 4.88 7.87
B | laimax 4 2-7 2.01 2.00
O
A leaffall 0.1 0.03-0.95 0.067 0.035
Ima 80 20-150 136.81 147.45
§ nue 7 1-20 8.90 8.21
| qlO0_mr 2 14 1.00 1.00
z br_mr 10 10°-107 7.39x10° 6.35x10°
rg_frac 0.2 0.05-0.5 0.06 0.066
< astem 0.7 0.1-0.95 0.75 0.74
. 1/(250%x365) — 5 5
= tstem 1/(50%365) 1/(10%365) 1.98x10 1.63x10
= 1/(25%365) — 4 -4
— troot 1/(5%365) 1365 8.55%10 7.88%x10
ql0_hr 2 1-4 2.98 2.68
: . 1/(5%365) — 3 3
g,
g br_lit 1/(2%365) 10/(5365) 4.97x10 5.36x10
Q —
Z | brsom |1/30x365) | 1(/18%36655)) 2.79x10° | 2.88x10°
dr 107 1010 2.46x107 3.39x107
stemc_init 5000 1000 — 15000 1070.9 1417.8
U: rootc_init 500 100 — 3000 100.56 100.61
';é litc_init 600 50 — 1000 60.74 66.77
somc_init 7000 1000 — 25000 2029.1 4708.2
839  Parameter units refer to Table 1 of Safta et al. (2015). The LL represents the log likelihood
840  evaluated at the MAP parameter estimates; the larger the value is, the better the model fit.
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843  Figure 1. Simulated traces for the 50-dimensional Gaussian distribution based on the AM and
844  DREAM sampler. The black line denotes the evolution of the mean of sampled x;; the green and
845  blue lines depict the evolution of the sampled standard deviation (Std) of x;¢ and Xso,

846  respectively; and the red line denotes the evolution of the covariance between x5 and x39. The
847  true values of these four statistics are indicated with different symbols at the right hand side in
848  each plot.
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Figure 2. Results for the 10-dimensional Cauchy distribution from AM and DREAM. Evolution
of sampled x; values (a) in one chain of AM and (c) in ten interacting chains of DREAM, where
each chain is coded with a different color; and approximated (histogrm) and actual (red curve)
marginal posterior distributions of x; from (b) AM and (d) DREAM.
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855  Figure 3. Results for the 4-dimensional trimodal distribution based on AM and DREAM.

856  Approximated (histogrm) and actual (red curve) marginal posterior distributions of x; from (a-c)
857  three different runs of AM and (d) four interacting chains of DREAM; and (e) evolution of

858  sampled x; values with DREAM in the four chains, where each chain is coded with a different

859  color.
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861  Figure 4. Gelman Rubin R statistics of all the 21 parameters in the DALEC model (a) for the
862  last 1,000,000 iterations from ten independent AM runs and (b) for the last 100,000 iterations
863  from the DREAM simulation using ten chains. The values less than the threshold of 1.2 suggest
864  chain convergence.
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867  Figure 5. Estimated marginal posterior probability density functions (PPDF) of the 21 parameters
868  in DALEC model based on the AM and DREAM algorithms.
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870  Figure 6. AM and DREAM results for parameters tsmin and leaffall in the DALEC model. The
871  estimated marginal posterior distributions of (a) tsmin and (b) leaffall; Trace plots of (c) sampled
872  tsmin and (d) sampled leaffall with AM using ten independent chains; and trace plots of (e)
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874  of each chain is coded with a different color.
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strongly correlated with the corr value of -0.95.
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881  Figure 8. (a) Observed NEE with years highlighted in red where the left mode of zsmin has a
882  better model fit and years hightlighted in blue where the right mode of #smin has a better model
883  fit; (b) the simulated leaf area index (LAI) of years 1992 and 1994; and (c) the recorded lowest
884  temperature of years 1992 (blue) and 1994 (red). The blue and red lines in (c) highlight the

885  corresponding periods of leaf fall until LAI becomes zero for 1992 and 1994, respectively. The
886  color scheme is synchronized between (a), (b), and (c) frames. Note that decreases in LAI as
887  predicted by our simplified version of DALEC reflect cholorphyll loss rather than leaf drop.
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893  Figure 10. 95% confidence intervals of the simulated NEE values in year 1995 based on the
894  parameter samples from AM and DREAM. Two measures of predictive performance, CRPS
895  statistic and predictive coverage, indicate that DREAM outperforms AM in prediction.
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Figure 11. Results of two independent chains of AM with the initial covariance matrix

constructed using the converged DREAM samples. The R statistic in (a) suggests that different
AM chains converged to different tsmin and leaffall values. One chain captures (b) the left mode
of tsmin and (c) the corresponding right mode of leaffall; and the other chain identifies (d) the
right mode of zsmin and (e) the corresponding left mode of leaffall. No single AM chain can
capture all the modes of the two parameters within a reasonable number of MCMC iterations.
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